
DOI: 10.1515/auom-2015-0019

An. Şt. Univ. Ovidius Constanţa Vol. 23(1),2015, 277–290

Upon the Haskell support for the web
applications development

Anca Vasilescu

Abstract

Some of the most challenging directions in recent theoretical and
practical research concern both the web science and the web applications
development. Any alive science and any alive programming language
should increase its connection with the web domain. Apart from general
advantages provided by the functional language programming Haskell,
its specific support for the web applications design and implementation
is highlighted in this paper. It is also our target to reveal here some
mathematical grounds of the web as a modern and very young science.

Appropriate examples will be selected from our students’ functional
web applications. So, the web ecosystem and particularly those charac-
teristics which are relevant for guiding our students to choose Haskell

for developing performant maths-based web solutions are pointed out.
All the mathematical evaluations involved in this approach are Haskell

based.

1 Indroduction

From the end-user point of view, probably the most challenging directions in
functional programming are: parallel and concurrent programming, web appli-
cation development support, generic programming or type/kind-level program-
ming. Out of these, are the web applications the most widely used nowadays?
The answer is definitively, yes, they are.

Key Words: computer science education, functional programming languages, Haskell,
Page Rank metric, web applications

2010 Mathematics Subject Classification: 68N18, 97R50, 68M11, 68U35
Received: 2 May, 2014.
Revised: 20 June, 2014
Accepted: 29 June, 2014

277

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 278

Web applications are becoming the standard way to interact with users.
The benefits of this approach are many: you do not have to create a different
executable file for each system from which your client may access your applica-
tion (although you need to consider interoperability issues between browsers),
and you do not need users to download or execute any binary code: everything
runs smoothly inside the browser [7].

It follows that, any alive programming language on the software market has
to increase its support for web application development, including Haskell.
Using the same language, for example Haskell, for both backend and frontend
web application sides, reduces the developer effort when working on both parts
at the same time, and also it favors to share the code between these parts.

Apart from general advantages provided by Haskell, the specific Haskell

support for the web applications design and implementation is highlighted
in this paper. It is our target to reveal the Haskell web ecosystem and
particularly to focus on those characteristics which are relevant for guiding
our students to choose Haskell for developing performant web applications.
An appropriate example will be selected from our students’ functional web
applications pool, namely a personal blog. For the associated blog content, we
shall analyze the significance of the internal web pages using specific metrics.
We shall use the same Haskell programming language support for the involved
computations.

As a very dynamic domain, both the developers and the researchers have to
attentively look at the web context. In order to outline the sense of the modern
phrase web science we consider here the main ideas from [2]. The general
meaning of web science is not just about methods for modelling, analyzing
and understanding the web at the various levels. It is also about engineering
protocols and providing infrastructure, and ensuring that there is fit between
the infrastructure and the society that hosts it. Web science is inherently
interdisciplinary, and it has to be able to drive web development in socially and
scientifically useful ways. The web needs to be studied and understood, and it
needs to be engineered. That is why, the researchers’ interest for mathematical
and algorithmic foundations of the web and the internet is increasing during
this decade.

Being teachers, we have also the moral duty to keep the students on the
track of updated programming languages offer. Learning functional program-
ming sets a student in a much better position as a developer, mainly because
functional paradigm is closer to pass through first class programming in the
near future. Hence, our students will be prepared to develop larger and faster
applications that bring satisfaction and enthusiasm to the world wide cus-
tomers. From this point of view, this paper aims to reveal some aspects just
on the line between computer science and computer science education.

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 279

2 Theoretical aspects

2.1 Connecting functional programming and the web

By definition, Haskell belongs to the family of functional languages, a broad
set which also includes: ML, Lisp, Scala or Clojure [7].

Notice that functional programming paradigm is increasing the program-
mers’ interest, day by day. Popular programming languages like Java or C#
are embracing the functional features, while the original languages like Erlang,
Haskell, OCaml or Scala are gathering these advantages from the very begin-
ning. Out of these examples, Haskell enjoys probably the greatest interest
both from academic and from industrial sides. It is continuously supported
by a large number of packages suppliers and a very active international events
agenda.

Haskell is very appreciated because it supports the programmer to write
correct code by at least three features of the language: (1) strong static typing,
meaning that the type of an expression and/or the value are already known
during the compilation, before the execution, (2) pure functions, meaning that
in Haskell a function does not have side-effects and consequently, the code
becomes predictable and easier to test and (3) lazy evaluation, meaning that
an expression is not evaluated unless its result is required.

Following the definitions from [7], a web framework is a library or set of
libraries prepared to be used for developing a web application. Usually, it
covers all possible technological requirements, such as: a routing system - for
linking a URL to a specific piece of code to be executed when this URL is
to be served, a templating system - for generating the final HTML output,
several kinds of caches, database access, and authentication through different
protocols.

The official Haskell website [12] points out the most active Haskell web
frameworks as follows: Happstack, Snap and Yesod. Out of these three frame-
works, Yesod is the full-featured one because it provides solutions for templat-
ing, routing, persistence, sessions, JSON, authentication/authorization and,
the most important thing, if the code compiles then it works. Besides, using
Yesod, Haskell allows compile-time checking for correctness based on some
metaprogramming facilities provided by the specialized DSLs, namely domain
specific languages.

So, for Haskell, a specific, very good choice is Yesod. As part of this
framework, the Persistent library is developed for making everything as
type-safe as possible. Using Yesod framework, we can manage all parts of a
web application, including routing and templating. For templating, different
sub-libraries for handling each common output language in the web have been
developed: Hamlet for HTML documents, Cassius and Lucius for CSS style

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 280

sheets, and Julius for JavaScript code.
In the recent book [9], important advantages of the Haskell base for web

development are mentioned. Apart from giving a large performance advantage
over other offers, this choice together with its related frameworks provide a
specific architecture designed for performance, too. In terms of time perfor-
mance, the Yesod’s server Warp, for example, is appreciated as the fastest
Haskell web server around. So that, combining Yesod framework facilities
and Warp time performance, one of the fastest web application deployment
solutions is available.

In order to have a solid Haskell based web application, a smart haskeller
could count on: simplicity of the language, simplifying the deployment for
increasing performance, producing cleaner and more modular code, compiler
automatically catching mistakes, type-safety and concise and declarative syn-
tax, advanced type system features and patterns.

2.2 Connecting mathematical foundations and the web

Based on a client-server architecture, a standard web application gets a sce-
nario like this: the clients just enter a web address into the browser and should
get the content they are expecting for. The development of such an application
is divided into two parts: the backend - a server that will listen for HTTP re-
quests and return and update information, and the frontend - the code running
in your clients’ browsers, sending the correct requests to the backend.

An important decision to make when web applications are designed is the
choice of the appropriate programming language. This step involves both the
client, namely the web browser, and the server. Regarding the programming
language for the server side, usually, the web developers have to choose of:
dynamically typed languages like php, Python, Ruby or typed languages like
Java, C#. However, following the new trends in programming design, there
is another option that should be taken in consideration when we are speak-
ing about the web applications: Haskell, the pure functional programming
language.

From the end-user point of view, wikis, blogs or social networks are the
most popular page types in the web framework. The internet users generate
their own texts, express opinions, comment a book or a movie, post personal
photos, videos, music, on their own blog or into the others’ spaces. For all of
them, but especially for a blog owner, some mathematical attributes should
be very important for revealing the quality of his/her blog in the community.
Out of these attributes, the most important state about the significance or the
importance of a web page coming out from three perspectives: (a) its relevance
to specific information needs, for example a user query, (b) its popularity or

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 281

the rank as a measure of its location into the specific web graph and (c) its
absolute quality beyond any particular user requirements.

While the relevance of a page related to a given set of keywords is given by
the presence and the positions of those keywords, the overall rank of the page
depends also on its connections in the web graph. These two characteristics
are largely decided through specific metrics as we shall mention bellow. But,
the absolute quality of a given web page or blog content essentially depends
on the user’s own critical faculties, together with a content verification based
on different reliable sources.

Information recovery techniques have been modified to the web area for
establishing the relevance of web pages to keyword queries. There are known at
least four algorithms for relevance ranking, namely Boolean spread activation,
most-cited, TFxIDF for Term Frequency combined with Inverse Document
Frequency and vector spread activation [5], [6].

For the interest of this paper, we consider here the operation of the last
two metrics, namely TFxIDF and vector spread activation for deciding a blog
content relevance. The notations to be used in defining the relevance metrics
are: M is the number of query words, Qj is the jth query term, for 1 ≤ j ≤M ,
N is the number of web pages in index, Pi is the ith page or its identification
number, Ri,q is the relevance score of Pi with respect to the query q, Lii,k is
the occurrence of an incoming link from Pk to Pi, Xi,j is the occurrence of Qj

in Pi.
Based on the vector space model, the relevance score of a blog page is the

sum of weights of the query terms that appear in the document, normalized
by the Euclidean vector length of the document. The weight of a term is a
function of the word’s occurrence frequency (also called the term frequency,
denoted by TF) in the document and the number of documents containing the
word in collection (the inverse document frequency, denoted by IDF). So, the
relevance score of Pi with respect to the query q is defined by [5]:

Ri,q =

∑
Qj

(0.5 + 0.5
TFi,j

TFi,max
)IDFj√∑

j∈Pi
(0.5 + 0.5

TFi,j

TFi,max
)2(IDFj)2

(1)

where TFi,j is the term frequency of Qj in Pi, TFi,max is the maximum term

frequency of a keyword in Pi and IDFj = log(
N∑N

i=1Xi,j

).

The general vector space model is often avoided because it does not con-
sider the hyperlink information as done in web page quality models. Hence,
the vector spread activation method incorporates score propagation as done
in Boolean spread activation. Each web page is assigned a relevance score (ac-
cording to the TFxIDF model) and the score of a page is propagated to those

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 282

it refers. That is, given the score of Pi with respect to the query q as Si,q and
the link weight 0 < α < 1,

Ri,q = Si,q +

N∑
j=1
j 6=i

αLii,jSj,q (2)

It follows that also the practical tests show that the vector spread activation
metric performs only marginally better than TFxIDF in terms of retrieval
effectiveness. The above table presents the average precision for each of the
previous four algorithms, for a pool of fifty-six test queries [5]:

Boolean spread most-cited TFxIDF vector spread

activation activation

Average precision 0.63 0.58 0.75 0.76

Concerning the second criterion, the web page popularity or authority,
there are also many appropriate algorithms. The recent results in web science
are proving that the popularity of a web content depends on the hyperlink
structure it belongs to. Usually, the link structure analysis is based on the
notion of link from a page p to page q, namely an endorsement of q by p. In
[5] a set of largely used metrics for link structure analysis is presented, mainly
the impact factor, the Page Rank, the mutual reinforcement approach or HITS
(for Hyperlink Induced Topic Search) and PicASHOW.

For the interest of this paper application, a personal web blog, the Page
Rank metric is presented here. This is based on the mathematical concept of a
Markov chain by assigning a popularity score to each web page in accordance
with its number of incoming links in the web (sub)graph.

The general formula for the rank R(p) of the page p is as follows [6]:

R(p) =
∑
q∈Q

R(q)

L(q)
(3)

where R(p) represents the page rank of the source page p, Q is the set of all
pages pointing to p and for each page q ∈ Q, L(q) is the number of distinct
pages pointed (or linked) by q. So, the rank of the page p appears as the
sum of the ranks of the pages pointing to it, each divided by the number of
outgoing links from those pages.

Following this definition, the Page Rank algorithm looks like helping the
older pages because the new ones usually have only a few incoming links
despite their actual importance. That is why, a damping factor d might be

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 283

added from the very beginning, considering the possibility of jumping from
one node to any other node chosen randomly. The new ranking evaluation is:

R(p) = d ∗
∑
q∈Q

R(q)

L(q)
+

1− d
N

(4)

where N is the total number of pages in the given blog and d is statistically
appropriate to be set to 0.85. For the choice of d = 1 the previous formula
holds and for d = 0 the starting proposal holds, namely all links having equal
rank 1

N .
The definition formulae are obviously recursive and the evaluation has to

be done starting from a set of arbitrary assignments of ranks for each page.
In a matrix-based representation, the previous relations (3) correspond to the
next iterative system based on the specific matrix product:

r1 = L× r0
r2 = L× r1,meaning r2 = L2 × r0 (5)

· · ·
rk = L× rk−1,meaning rk = Lk × r0
· · ·

where r0 is the vector of initial assignments of ranks and the matrix L rep-
resents the representation given by the web graph structure and the specific
model of the pages importance transfer through links. One may consider
typically all equal ranks as start and make the evaluation by applying specific
techniques based on: dynamical systems, linear algebra, probabilistic approach
or others.

An important point is that we do not actually need to compute the limit
of these rank values, so the chain of computations can be interrupted when
the differences between the elements of rk and the correspondent ones of rk−1
are less than a convenient value epsilon [6]. The sequences of iterates r0, Lr0,
..., Lkr0 tends to the stable, equilibrium value assuming to be the Page Rank
vector of the given web graph.

For our practical example, in the next section we shall use this method for
evaluating the significance of our blog pages.

3 Applications

As it is mentioned in [13], the master students from the Faculty of Mathemat-
ics and Informatics, University Transilvania of Braşov are studying Haskell in
the third semester. In the framework of this course, one of the most achieved

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 284

subjects for their research report is concerning the Haskell based web appli-
cations. For the interest of this paper, we propose one such example, namely
the appropriate part from [8] as a valuable tutorial and its related application.
Hence, we have an Yesod project, with SQLite support for creating a personal
GreenBlog.

After you have created the project using yesod init command, you have
to focus on the important files and directories of the project, as follows: (1)
config/routes: in this file you will configure the path, namely the routes,
from the URL address to the source code; (2) config/models: in this file
you will configure the application persistent objects, namely database model
and database tables; (3) Handler/: contains the handler files, namely the
Haskell .hs files with the code called when the associated URL is accessed;
in a handler you process user input, perform database queries and create
responses; (4) templates/: contains users templates, namely hamlet files as
HTML templates, julius files as Java Script templates, cassius and lucius

files as CSS templates.
In order to see how all these work together, let us see how we can make

the ”About” page for our blog.
Step 1. Since we have a web application, we need some HTML, CSS or

Java Script code. We shall use HTML template code and we shall put it in a
hamlet file (the extension of the file will be hamlet and not html). We shall
save the hamlet file in the templates directory. For example, the next code
displays the contact details of the blog owners on the ”About” page:

<h1>For more information about the project, contact:

<h2>Neagu Elena, e-mail: elena_neagu90@yahoo.com

<h2>Parloaga Claudia-Stefania, e-mail: claudiaparloaga@yahoo.com

Step 2. To actually see the content of the contact.hamlet file described
above, we need a handler file for connection. This handler is a Haskell file
which implements the method getContactR. The appropriate handler code
should be like this:

module Handler.Contact where

import Import

getContactR :: Handler Html

getContactR = do

defaultLayout $ do

setTitle "Contact"

$(widgetFile "contact")

This code sets the title of the page using setTitle and calls the hamlet file
contact.hamlet in the last row through a widget using the layout
defaultLayout.

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 285

Step 3. In order to access the handler through an URL address, we need
to define a route. For this, add in the file routes from the config directory
the following route:

/contact ContactR GET

This line defines a route through a set of expected components: the web
page URL address http://localhost:3000/contact, including the handler

name contact, the route name ContactR and the type GET for the accepted
requests from the web page. Following this definition, the route ContactR

waits for requests from the contact resource and it answers the specific GET

requests coming through the default Yesod port 3000.
In order to see the page, you have to proceed in two steps: (1) start the

yesod devel application such as the server is listening on port 3000 and (2)
access the web page resource localhost:3000/contact from your favorite
browser. You should see the content of the Figure 1.

Figure 1: <About> page Figure 2: Blog content

Also, to set the layout for your application, you should consider to modify
the global.css file located in the static directory. You can do your own
layout.

Of course, using more then one handler, one route and one hamlet file
like in the previous example, we obtain a totally functional blog. We also
present in Figure 2 such a blog page from our application. Trust you: if you
understand the basics, you can do any complex Haskell based web application
by yourself!

In order to evaluate the social impact of our personal blog in the internet,
we may proceed by using the specific metrics introduced in the previous section
for measuring the significance of our blog web pages. For example, we shall
evaluate the page ranks for our blog content in accordance with the formula
(4).

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 286

Let consider the internal structure of the associated web graph given in
Figure 3.

Figure 3: Blog graph

We have five pages at first level, corresponding with five nodes in this web
graph. Here, a directed edge from node i to node j appears iff the web page
i references the web page j. For example, page 1 <Home> links to all of the
other pages, so node 1 will have outgoing edges to all of the other nodes and
meantime, the page 4 <Contact> has only one link, to page 1, so that the
node 4 will have one outgoing edge to node 1.

In our evaluation model, each page evenly transfers its importance to the
pages that it links to. Hence, the node 1 has four outgoing edges, so it will
equally pass on of its importance to each of the other four nodes. Node 4
has only one outgoing edge, so it will pass on all of its importance to node 1.
Reiterating this method, we have the appropriate matrix L for our model.

We store the values of page ranks in a vector r, where r[i] is the rank of
page i for each i = 1, 5. So, starting from the initial configuration of values r0
for r, the computation is iterating as follows from the relations (5).

Suppose that initially the pages importance is equally distributed among
the five nodes, each getting 1

5 . So, the initial rank vector is the column
r0 = (0.2 0.2 0.2 0.2 0.2)′. Each incoming link increases the importance
of the linked web page, meaning that at each step, we update the rank of each
page by adding to the current value the importance of the incoming links.
This is the same as multiplying the matrix L by the current vector r step by
step.

The next Haskell source code is evaluating the r components values suc-
cessively.

rNext rPrev = [sum[fst z * snd z | z<-zip (l!!(i-1)) rPrev]|i<-[1..5]]

converge p (x:ys@(y:_))

| p x y = fst x

| otherwise = converge p ys

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 287

--infinite list of pairs

--given by k and the k-th component of the successive vectors r

pairPos i = zip (iterate (+1) 0) [x !! (i-1) | x <- iterate rNext r0]

stable i eps = converge (\x y -> abs(snd x - (snd y))<eps) $pairPos i

pageRank eps = maximum [stable i eps | i <- [1..5]]

checkVal eps = [(pairPos i !! (pageRank eps - 1),

pairPos i !! pageRank eps,

pairPos i !! (pageRank eps + 1)) | i <- [1..5]]

The incoming rank vectors rk, for the first six natural numbers k, are:

r0 = (0.2 0.2 0.2 0.2 0.2)′

r1 = (0.6 0.05 0.05 0.25 0.05)′

r2 = (0.35 0.15 0.15 0.2 0.15)′

r3 = (0.5 0.875 0.875 0.2375 0.875)′

r4 = (0.4125 0.125 0.125 0.2125 0.125)′

r5 = (0.4625 0.103125 0.103125 0.228125 0.103125)′

Depending on the given value for epsilon, the corresponding equilibrium
point is deduced. For example, for eps = 0.01 and eps = 0.000001 the Haskell
code answers are, respectively:

*Main> pageRank 0.01

7

*Main> checkVal 0.01

[((6,0.43),(7,0.44),(8,0.44)),

((6,0.11),(7,0.10),(8,0.11)),

((6,0.11),(7,0.10),(8,0.11)),

((6,0.21),(7,0.22),(8,0.22)),

((6,0.11),(7,0.10),(8,0.11))]

*Main> pageRank 0.000001

22

*Main> checkVal 0.000001

[((21,0.444445),(22,0.444444),(23,0.444444)),

((21,0.111110),(22,0.111111),(23,0.111111)),

((21,0.111110),(22,0.111111),(23,0.111111)),

((21,0.222222),(22,0.222222),(23,0.222222)),

((21,0.111110),(22,0.111111),(23,0.111111))]

In these cases, the corresponding Page Rank values are given by the vectors
r7 = (0.44 0.1 0.1 0.22 0.1)′ and
r22 = (0.444444 0.111111 0.111111 0.222222 0.111111)′, respectively.

We remark the powerful Haskell support both for the web application de-
velopment and for the mathematical computation involved in the Page Rank

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 288

metric evaluation. The Haskell code is robust, concise and easily understand-
ing for mathematicians.

The art of programmer is obviously the art of combining the Haskell

functional language facilities with the support of the external framework and
packages. It is already well-known that the Haskell programmers are con-
tinuously interested in finding the best solutions for each problem-challenge.
Fortunately, such practical examples represent significant experiences for our
master course. Apart from proving our students research talent, they empha-
size the Yesod-Haskell as a solid foundation for the web application devel-
opment.

Frequently, our students consent that things with functional programming
are not at all easy, especially at the very beginning. But learning Haskell

and its related frameworks will not just add another programming language
to your résumé, but will teach you a new programming style, closer to the
natural language.

4 Conclusions and further work

Following this paper results, we may conclude that Haskell is an appropriate
solution for web applications development, with solid mathematical founda-
tions. This conclusion arises from many specific aspects, such as: the devel-
oper may count on the characteristics of Haskell as a functional programming
language, the Haskell community is active and continuously provide/request
new hackages for developers needs, there are many good choices for Haskell

based web frameworks, the students’ interest and the commercial users’ in-
terest for functional based applications are increasing, the web science grows
up as a modern interdisciplinary science and, last but not least, the available
mathematical models favor a scientific approach for modelling, analyzing and
understanding the internet context.

This paper content represents our interest for functional programming sup-
port in general, and particularly for Haskell support in different computer
science domains. Here, we have aimed the Haskell support for the web ap-
plications development, while our previous results from [10] or [1] are focusing
on the Haskell support for algebraic modeling or parallel image processing,
respectively.

From the educational point of view, this paper comes in the framework of
our interest for permanent improving our students’ professional and personal
skills. Some reasons for studying Haskell in University have been presented
by our team in [11]. It is very helpful to use the same language both for the
application development and for the mathematical evaluations involved in the
performance measuring process.

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 289

As further work, apart from using Yesod, our research may progress in
the direction of using also other Haskell web frameworks and compare the
performance of derived applications. On the other hand, we may compare the
Haskell support and other functional language support for implementing the
same real-life web application.

Finally, to mention that students are always ready to learn new program-
ming languages because ”they genuinely like to program and aren’t satisfied
with the languages they already know” [4] is an advantage both for our edu-
cational approach and for this paper results.

References

[1] Băicoianu, A., Pândaru, R., Vasilescu, A., Upon the performance of a
Haskell parallel implementation, Bulletin Of The Transilvania University
Of Braşov - Series III: Mathematics. Informatics. Physics, Vol 6(55), No.
2 - 2013, 61-72, 2013.

[2] Berners-Lee, T., Hall, W., Hendler, J.A., OHara, K., Shadbolt, N.,
Weitzner, D.J., A Framework for Web Science, Foundations and Trends
in Web Science, Vol. 1, No 1 (2006), 1130, 2006.

[3] Bozoşan, M., Dezvoltarea aplicaţiilor web sub Haskell, in Romanian, Dis-
sertation Thesis coordinated by Anca Vasilescu, Master Program in Com-
puter Science, University Transilvania of Braşov, Department of Mathe-
matics and Informatics, UTBv-MI-2013-B, 2013.

[4] Collins, G., High Performance Web Applications in Haskell, Track: Func-
tional Web, QConLondon 2011, Intl Software Development Conference,
March 9-11, 2011.

[5] Dhyani, D., Ng, W.K., Bhowmick, S.S., A Survey of Web Metrics, ACM
Computing Surveys 34, 4 (December 2002), 469-503, 2002.

[6] Luccio, F., Pagli, L., Steel, G., Mathematical and Algorithmic Founda-
tions of the Internet, CRC Press, 2012.

[7] Mena, A.S., Beginning Haskell. A Project-Based Approach, APress, 2014.

[8] Pârloagă, C.Ş., Neagu, E., Using Haskell for web application develop-
ment, Research Project coordinated by Anca Vasilescu, Master Program
in Computer Science, University Transilvania of Braşov, Department of
Mathematics and Informatics, UTBv-MI-2014-PN, 2014.

UPON THE HASKELL SUPPORT FOR THE WEB APPLICATIONS
DEVELOPMENT 290

[9] Snoyman, M., Developing Web Applications with Haskell and Yesod,
O’Reilly Media, Inc, 2012.

[10] Vasilescu, A., Algebraic model for the CPU arithmetic unit behaviour,
Proc. of the Third Intl. Conf. MDIS 2011, Sibiu, Romania, October 20-12
2013, Lucian Blaga University Press 2014, Editor Dana Simian, 136-145,
2014.

[11] Vasilescu, A., Drobotă, F.R., Reasons for studying Haskell in University,
Proc. of The 7th Intl Conf on Virtual Learning, Virtual Learning - Virtual
Reality, November 2-3 2012, Braşov, Romania, Editors: Marin Vlada,
Grigore Albeanu, Dorin Mircea Popovici, 394-400, 2012.

[12] ***, The Haskell website, http://http://www.haskell.org/haskellwiki/Haskell

[13] ***, Haskell Communities and Activities Report, on-line, May 2014
http://www.haskell.org/haskellwiki/Haskell Communities and Activities Report

Anca VASILESCU,
Faculty of Mathematics and Computer Science,
Transilvania University of Braşov,
Bdul Iuliu Maniu, no. 50, Braşov, Romania.
Email: vasilex@unitbv.ro

