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An adaptive stepsize algorithm for the
numerical solving of initial-value problems

Romulus MILITARU

Abstract

The present paper focuses on the efficient numerical solving of initial-
value problems (IVPs) using digital computers and one-step numerical
methods. We start from considering that the integration stepsize is the
crucial factor in determining the number of calculations required and
the amount of work involved to obtain the approximate values of the
exact solution of a certain problem for a given set of points, within
a prescribed computational accuracy, is proportional to the number of
accomplished iterations. We perform an analysis of the local truncation
error and we derive an adaptive stepsize algorithm which coupled with a
certain one-step numerical method makes the use of this structure more
computationally effective and insures that the estimated values of the
exact solution are in agreement with an imposed accuracy. We conclude
with numerical computations proving the efficiency of the proposed step
selection algorithm.

1 Introduction

A lot of problems in engineering and science can be formulated in terms of
differential equations. Differential equations occur in the description of many
physical phenomena, for example: a condenser discharging, a gas escaping
under pressure from a container, heat flow involved by the high temperatures
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that act on a porous material, uninhibited bacteriological growth, and recently
in antropology, [1],[9], [12],[13]. Most of these problems require the solution
to an initial-value problem IVP, that is, the solution to a differential equation
that satisfies a given initial condition. The majority real-world initial-value
problems are so complicated that they cannot be solved using analytical meth-
ods. Therefore, we must resort to numerical methods, which are designed to
calculate approximate values of the solution function by some process requir-
ing a finite number of steps, using a computer code. The numerical treatment
of the initial value problems is an intensively researched field, the ability to
numerically approximate the exact solution being the only way to obtain in-
formation about the trajectory. The high-efficiency computers (speed and
memory), their wide distribution and the computer software allow us to cre-
ate efficient adaptive numerical algorithms for solving IVPs, thus giving the
possibility to study and predict a large range of realistic problems. In addi-
tion, the numerical processing allows the treatment of particular conditions
which are many times impossible to simulate in experimental tests.

2 Problem statement

Let the first order initial-value problem:{
y′ = f(x, y)
y(x0) = y0

(1)

where f : [a, b] × R → R, a < b, is a real valued function of two variables,
continuous and satisfying a Lipschitz condition with respect to variable y,
x0 ∈ [a, b] and y = y(x) a real valued function defined on [a, b]. The im-
posed regularity conditions for the function f guarantee that the initial-value
problem (1) possesses an unique solution, [4],[8],[18].

The numerical solving of an IVP may be accomplished by the mean of two
main techniques, [7]:
* construction of a function ȳ(x) belonging to a certain class of standard
functions and which approximates ”sufficiently” smooth the exact solution
y(x) over some range of values x, that is |y(x)− ȳ(x)| ≤ ε, ε being the accuracy
imposed by the user;
* approximation of the values of the exact solution y(x) for a certain discrete
abscissae xi, i = 1, , , , , n, n ∈ N∗.Usually the chosen points form an arithmetic
series with stepsize h.

We will focus on the second type of numerical techniques. Particularly we
consider the case of one-step methods, whose main feature is that they involve
for the approximation of the exact value of the solution in a certain point
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only information from the previous point. Such a method has the following
algorithm, [2],[18],[17]:

using the initial values (x0, y0) of the (IVP) and a stepsize h ∈ R∗ we get
the approximate values ωi of the exact solution for the given discrete points
xi, i = 1, 2, ..., n, as follows:

for i = 0, 1, ..., n− 1 do
xi+1 = xi + h;
ωi+1 = ωi + hΦ(xi, ωi;h);

where ωj := ω(xj , h) denotes the approximate values of y(xj) and the
analytical expression of the function Φ = Φ(x, y;h) : [a, b]× R× R→ R
depends on the chosen numerical method and we suppose it being continue.

Examples: Euler methods, Trapezoidal method, Runge-Kutta methods, [10].

In practice it is often needed to find the approximation values of the exact
solution within a given precision and that leads to another problem: choosing
an adequate value for the stepsize. In consequence an important problem for
the numerical solving of an IVP is to control the global error. Unfortunately
this is usually not possible. Instead, we are looking to estimate and control
the local truncation error, which is done by adjusting the stepsize h so that
the local truncation error remains below a given precision.
Generaly, an adaptive stepsize searching algorithm should put more grid points
in the regions where the solution undertakes a great variability.

3 Stepsize selection and practical implementation

In the sequel we assume that the considered one-step method is of order p,
meaning that the local truncation error:

τi+1(h) =
1

h
(y(xi + h)− y(xi))− Φ(xi, y(xi);h)

verifies τi+1(h) = O(hp), (∀)i = 0, 1, ..., n− 1, [2],[9],[11]
According to these formulations, Euler method is a first order method, Trape-
zoidal method is a second order method. There are Runge-Kutta methods of
second, third, fourth order, [3],[19].

Remark 1. Considering that y(xi) ≈ ωi, for a certain i = 1, 2, ..., and using
the expression of the local truncation error, it follows for a chosen stepsize h:

τi+1(h) =
1

h
(y(xi+1)− ωi)− Φ(xi, ωi;h) = (2)

=
1

h
(y(xi+1)− (ωi + hΦ(xi, ωi;h))) =

1

h
(y(xi+1)− ωi+1)
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Choosing stepsize h, function of the precision desired in the approximation
of the values of the exact solution, represents the main problem.
Generally speaking there are two ways to improve the accuracy of the approx-
imations, [5]:
- reduce the stepsize h so as to lower the local truncation error. Then the
amount of steps increases, leading to increased round-off error and also the
amount of work and in consequence to a computational inefficiency;
- use a method of higher convergency order. Increase of the convergency order
p is reasonable only up to some limit; for example in the case of Runge-Kutta
methods, for s > 5 there are no explicit methods with the convergency order
p = s, s being the number of stages (number of function evaluations per step)
of the considered method, [3].

In consequence when we use the numerical computation to estimate the
exact values of the solution of a first order IVP, for particular values of the
independent variable x, we are interested to determine a stepsize h, as large
as possible, in order that the local truncation error remains below an accuracy
ε imposed by user.
Let Fq(a, b) be the set of functions for which all partial derivatives up to
including order q exist and are continuous and bounded on [a, b]. There is the
following general result, [15]:

Theorem 1. (Gragg, 1963) Let f ∈ FN+2(a, b) and let ω(x, h) be the ap-
proximate solution obtained by a one-step method of order p, p ≤ N, to the
solution y(x) of the initial value problem (1). Then ω(x, h) has an asymptotic
expansion of the form:

ω(x, h) = y(x) + hpep(x) + hp+1ep+1(x) + ...+ hNeN (x) + hN+1ẽN+1(x, h)

(3)
where ek(x0) = 0, k = p, p+ 1, ..., which is valid for all x ∈ [a, b] and all h =
hN = (x− x0)/N, N = 1, 2, ... The functions ei(x) therein are independent of
h and the remainder term ẽN+1(x, h) is bounded for fixed x and all h = hN =
(x− x0)/N, N = 1, 2, ...

Thus for a sufficiently small h and ep(x) 6= 0, based on (3) we get as a first
approximation:

ω(x, h)− y(x) = hpep(x) +O(hp+1) (4)

From (2) and (4) it results that:

|τi+1(h)| ≈ |hp−1ep(xi+1)| (5)

Assuming that xi+1 is a certain point denoted by x and the point xi where
the method is supposed to be exact (y(xi) ≈ ωi) is considered to be x0, then
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using a Taylor development about the point x0, since ep(x0) = 0, we obtain
from (5):

|τi+1(h)| ≈ |(x− x0)hp−1e′p(x0)| = |hpe′p(x0)| (6)

Proposition 1. For a fixed order p and (∀)m ≥ 1 there is the following
estimation:

(ω(x, h/m)− ω(x, h/(m+ 1))) ≤ ep(x)

(
h

m+ 1

)p

· 1

m2
(p(m− 1) + 2p − 1)

(7)

Proof: Using (4) we get:

ω(x, h/m)− y(x) = ep(x)

(
h

m

)p

+O(hp+1)

ω(x, h/(m+ 1))− y(x) = ep(x)

(
h

m+ 1

)p

+O(hp+1)

Thus, it follows:

ω(x, h/m)− ω(x, h/(m+ 1)) = ep(x)

(
h

m+ 1

)p((
1 +

1

m

)p

− 1

)
=

= ep(x)

(
h

m+ 1

)p
1

m

(
1 +

p−1∑
k=1

(
1 +

1

m

)k
)

Based on the inequality

(1 + a)t ≤ 1 + (2t − 1)a, (∀)t ≥ 1, a ∈ [0, 1]

we obtain:

(ω(x, h/m)− ω(x, h/(m+ 1))) ≤ ep(x)

(
h

m+ 1

)p

· p(m− 1) + 2p − 1

m2

Taking into consideration that we are looking for an approximate value ”suf-
ficiently” close to the corresponding exact one, we will consider in the sequel:

ep(x) =

(
m+ 1

h

)p

(ω(x, h/m)− ω(x, h/(m+ 1))) · m2

p(m− 1) + 2p − 1
(8)
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We will estimate e′p(x0) by a second order accuracy forward finite difference
formula, [6]:

e′p(x0) =
−3ep(x0) + 4ep(x0 + h)− ep(x0 + 2h)

2h
+O(h2)

Thus, using (8) we get:

e′p(x0) ≈ 1

2hp+1

m2(m+ 1)p

p(m− 1) + 2p − 1
· (4(ω(x0 + h, h/m)−

−ω(x0 + h, h/(m+ 1)))− ω(x0 + 2h, 2h/m)− ω(x0 + 2h, 2h/(m+ 1))

2p

)
(9)

Let ε denote the accuracy of the approximation. Then from (6) and (9) the
following statement holds:

Proposition 2. The appropriate stepsize h which insures that the local trunca-
tion error after one step using this one remains bounded by ε, is characterized
by:

h ≈ 1

2ε

m2(m+ 1)p

p(m− 1) + 2p − 1
· (|4(ω(x0 + h, h/m)− ω(x0 + h, h/(m+ 1)))−

− ω(x0 + 2h, 2h/m)− ω(x0 + 2h, 2h/(m+ 1))

2p

∣∣∣∣)
(10)

Proof: Imposing |τi+1(h)| = ε and using (6) it follows that ε ≈ |hpe′p(x0)|.
Thus (9) leads to:

ε ≈
∣∣∣∣ 1

2h

m2(m+ 1)p

p(m− 1) + 2p − 1
· (4(ω(x0 + h, h/m)− ω(x0 + h, h/(m+ 1)))−

−ω(x0 + 2h, 2h/m)− ω(x0 + 2h, 2h/(m+ 1))

2p

)∣∣∣∣
and eventually to the conclusion.

Concerning the practical implementation, the above adaptive stepsize
strategy allows the construction of an algorithm which determines the stepsize
h so that the local truncation error after one step using h remains bounded
by the given precision ε :

1. Initialize x0, ω0 and the starting stepsize h; m := 1;
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2. Evaluate:
2.1 the approximate values ω(x0 + h, h/m), ω(x0 + h, h/(m+ 1)),

ω(x0+2h, 2h/m), ω(x0+2h, 2h/(m+1)), using the selected numerical
method of order p;

2.2 the expression:

E =

∣∣∣∣ 1

2h

m2(m+ 1)p

p(m− 1) + 2p − 1
· (4(ω(x0 + h, h/m)− ω(x0 + h, h/(m+ 1)))−

−ω(x0 + 2h, 2h/m)− ω(x0 + 2h, 2h/(m+ 1))

2p

)∣∣∣∣
3. Test:

If E ≤ ε then replace x0, ω0 by x0 + h, ω(x0 + h, h) and return to Step 1;
Else replace h by the value given by (10):

If x0 + h > x then h := |x− x0| and return to Step 1;
Else return to Step 1.

Remark 2. (a). Initially we can consider h := |x − x0|, x being the point
where we are looking to estimate the value of the exact solution of the given
IVP, within a certain accuracy ε;
(b). In order to determine the approximate value of the exact solution for a
certain point x 6= x0, we apply the sequence Step 1 - Step 3 until x0 + h = x;
(c). All the numerical methods for a single first order differential equation may
be extended for the case of a system of first order differential equations, the
dependent variable being replaced by a vector. Also, taking into consideration
the fact that any higher differential equation can be written as a system of first
order differential equations it follows that the methods used for the numerical
processing of higher differential equations are identical to those for first order
equations, [5],[2],[15].

4 Numerical examples

We will exemplify the functionality and the efficiency of the presented stepsize
selection algorithm for the case of numerical processing of some practical IVPs.

1. As a consequence to the Kirchoff law, the intensity of the current I respects
the following differential equation in the case of certain electrical circuits:

dI

dt
= −R

L
I +

U0

L
sin(ωt)
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where L, U0, R, ω are constants Assuming L = 1, R = 50, U0 = 1, ω = π,
respectively the initial condition I(0) = 0, we obtain the following IVP:{

dI

dt
= −50I + sin(πt)

I(0) = 0

We are looking to estimate the values of the exact solution I = I(t) at the
moments ti = 0.1 · i, i = 1, 15, with three exact digits, by the Euler method.

Remark 3. The exact solution is

I(t) =
1

2500 + π2

(
50 sin(πt)− π cos(πt) + πe−50t

)
Selecting Euler method and using the presented stepsize selection procedure,
imposing the accuracy ε = 10−4, we get the following approximations, by
means of C++ code:

t approximate value of I(t) exact value of I(t)
0.1 0.004972 0.004974
0.2 0.010702 0.010696
0.3 0.015417 0.015380
0.4 0.018604 0.018559
0.5 0.019970 0.019921
0.6 0.019381 0.019333
0.7 0.016895 0.016852
0.8 0.012756 0.012722
0.9 0.007367 0.007346
1.0 0.001258 0.001251
1.1 -0.004992 -0.004965
1.2 -0.010698 -0.010696
1.3 -0.015383 -0.015380
1.4 -0.018564 -0.018559
1.5 -0.019979 -0.019921

2. Given the initial value problem{
y′ =

5

3
y

2
5

y(1) = 1

we are looking to estimate the values of the exact solution y = y(x) in the data
points xi = 1 + 0.3 · i, i = 1, 10 with three exact digits, using Euler method.
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Figure 1: The graphical profile of the exact solution and the numerical one

Remark 4. The exact solution is y(x) = x5/3.

The approximated values of the exact solution y = y(x) for the given data
points, obtained by Euler method and the above adaptive stepsize algortihm,
within the given accuracy ε = 10−4 are presented below:

x approximate value of y(x) exact value of y(x)
1.3 1.54846 1.54847
1.6 2.18874 2.18876
1.9 2.91462 2.91466
2.2 3.72131 3.72138
2.5 4.60495 4.60503
2.8 5.56230 5.56241
3.1 6.59062 6.59077
3.4 7.68756 7.68773
3.7 8.85102 8.85121
4.0 10.07914 10.07936

3. Given the initial value problem{
y′ = −1000y + sin(x)
y(0) = −0.000001

we are looking to estimate the values of the exact solution y = y(x) in the
data points xi = 0.05 · i, i = 1, 150 with four exact digits, using a fourth order
Runge-Kutta method.
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Remark 5. The exact solution is y(x) =
1000 sin(x)− cos(x)

1000001
.

We choose the following fourth order Runge-Kutta method:

for i = 0, 1, ...

xi+1 = xi + h

ωi+1 = ωi +
1

6
(k1 + 2k2 + 2k3 + k4)

k1 = h · f(xi, ωi)

k2 = h · f(xi +
h

2
, ωi +

k1
2

)

k3 = h · f(xi +
h

2
, ωi +

k2
2

)

k4 = h · f(xi + h, ωi + k3)

(11)

A selection of the approximated values of the exact solution y = y(x) for the
given data points, within the given accuracy ε = 10−5 and obtained by using
the presented stepsize strategy are presented below:

x approximate value of y(x) exact value of y(x)
0.05 4.8980363e-5 4.8980370e-5
0.3 2.9456453e-4 2.9456457e-4
0.55 5.2183411e-4 5.2183418e-4
0.8 7.1665857e-4 7.1665866e-4
2.5 5.99272685e-4 5.99272688e-4
3 1.42109855e-4 1.42109858e-4

4.7 -9.99909863e-4 -9.99909888e-4
5.35 -8.04114624e-4 -8.04114629e-4

4. In many practical applications, circuits consists of numerous energy-
storing elements. Differential equations describing such circuits are, generally,
of a high order. Consider a RLC series circuit where L = 1H, R = 10Ω,
C = 0.25F, and U(t) = sin(t), t > 0. The current I = I(t) verifies the following
second order differential equation:

I ′′ = −R
L
I ′ − 1

LC
I +

1

L
U ′

Considering that I(0) = 0, I ′(0) = 0 we are looking to estimate the exact
values of the current at the moments ti = 0.03 · i, i = 1, 214, using a Runge-
Kutta IV-th order method, within the accuracy ε = 10−6.
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We can rewrite the given IVP in the general form (1) by setting:

y = (I, v)t

f = f(t, I, v) = (v, −R
L
v − 1

LC
I +

1

L
cos(t))t

y0 = (I(0), v(0))t = (0, 0)t

We present a selection of approximated values of the solution I = I(t), ob-
tained choosing the same Runge-Kutta IV-th order as above, coupled with our
stepsize selection procedure, imposing the accuracy ε = 10−6.
We make a comparison with the corresponding values resulted by using
Matlab.

t approximate value of I(t) value of I(t)
obtained predicted

by presented algorithm by Matlab
0.09 0.003055547 0.003055647
0.57 0.042154236 0.042153271
0.72 0.052480411 0.052478963
0.81 0.057772281 0.057770503
1.17 0.071412234 0.071410577
1.5 0.072724035 0.072723090
1.95 0.057852034 0.057852937
2.28 0.036724438 0.036718395
3.0 -0.025388922 -0.025387030
4.95 -0.087601896 -0.087599945
5.01 -0.084432621 -0.084431538
5.28 -0.066842206 -0.066844414
5.49 -0.049988838 -0.049988295
6.0 -0.002378324 -0.002375236
6.24 0.020669166 0.020671030
6.42 0.037120647 0.037122718

5. Given the initial value problem
y′′′ = −2y′′ − 5y′ − y + 4
y(0) = 0
y′(0) = 0
y′′(0) = 0

we are looking to tabulate the values of the exact solution y = y(x) in the
data points xi = 0.02 · i, i = 1, 50 within the accuracy ε = 6 · 10−5, using a
fourth order Runge-Kutta method.
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The above IVP can be rewritten in the general form (1) by setting:

y = (y, v, w)t

f = f(x, y, v, w) = (v, w, −2w − 5v − y + 4)t

y0 = (y(0), v(0), w(0))t = (0, 0, 0)t

A selection of the numerical values of the exact solution y = y(x), within
the imposed accuracy, obtained by using the fourth order Runge-Kutta method
(11) and the presented adaptive stepsize algorithm, by mean of C++ program,
are given in the following table. We performed a comparison with the exact
values given by Matlab.

x approximate value of y(x) exact value of y(x)
0.12 0.001072 0.001082
0.28 0.012511 0.012556
0.46 0.049709 0.049802
0.5 0.062209 0.062313
0.6 0.100679 0.100697
0.78 0.194788 0.194827
0.82 0.219788 0.219827
0.96 0.317416 0.317473

1 0.347879 0.347934

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1
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Figure 2: The graphical profile of the exact solution and the numerical one
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5 Conclusions

In this paper we expose a stepsize searching algorithm based on an analysis of
the local truncation error for the case of a one-step numerical method of order
p, for the numerical resolution of the initial-value problems. Starting from
the set of possible choices for the stepsize and taking into consideration that
the amount of work involved to obtain the final results is proportional to the
number of accomplished iterations, the algorithm allows to adjust this one, in
such way that the estimate of the local truncation error remains smaller than
a given accuracy. The numerical experiments performed by using several one-
step methods coupled with the presented algorithm, for first order and higher
order IVPs, prove its efficiency concerning the achievement of results which
are in agreement with a precision imposed by the user. We emphasize that
this algorithm can improve the accuracy of the estimated values predicted by
any one-step numerical method.
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