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Wave propagation in a microstretch
thermoelastic diffusion solid

Rajneesh Kumar

Abstract

The present article deals with the two parts: (i)The propagation of
plane waves in a microstretch thermoelastic diffusion solid of infinite
extent. (ii)The reflection and transmission of plane waves at a plane
interface between inviscid fluid half-space and micropolar thermoelas-
tic diffusion solid half-space.It is found that for two-dimensional model,
there exist four coupled longitudinal waves, that is, longitudinal dis-
placement wave (LD), thermal wave (T), mass diffusion wave (MD) and
longitudinal microstretch wave (LM) and two coupled transverse waves
namely (CD-I and CD-II waves). The phase velocity, attenuation co-
efficient, specific loss and penetration depth are computed numerically
and depicted graphically. In the second part, it is noticed that the am-
plitude ratios of various reflected and transmitted waves are functions
of angle of incidence, frequency of incident wave and are influenced by
the microstretch thermoelastic diffusion properties of the media. The
expressions of amplitude ratios and energy ratios are obtained in closed
form. The energy ratios have been computed numerically for a partic-
ular model. The variations of energy ratios with angle of incidence for
thermoelastic diffusion media in the context of Lord-Shulman (L-S) [1]
and Green-Lindsay (G-L) [2] theories are depicted graphically. Some
particular cases are also deduced from the present investigation.
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1 Introduction

Eringen [3, 4] developed the theory of micromorphic bodies.The theory of mi-
crostretch elastic solids developed by Eringen [5] is a generalization of the mi-
cropolar theory. Eringen [6] also developed the theory of thermomicrostretch
elastic solids. The particles of microstretch materials have seven degree of
freedom: three for displacements, three for microrotations and one for mi-
crostretch. A microstretch continuum can be model as composite materials
reinforced with chopped elastic fibres and various porous solids.The mate-
rial points of these bodies can stretch and contract independently of their
translations and rotations. A book by Eringen [7] gave an exposition of the
development in the microcontinuum field theories for solids (micromorphic,
microstretch, and microplar) including electromagnetic and thermal interac-
tions.

Various investigators have studied different types of problems in microstretch
thermoelastic medium notable among them are Ciarletta and Scalia [8], Iesan
and Quintanilla [9], Othman et al [10], Passarella and Tibullo [11], Marin [12,
13], Kumar et al [14], Othman and Lofty [15, 16], Kumar and Rupender [17,
18].

Singh [19] studied the reflection and refraction of plane waves at a liquid/
thermo-microstretch elastic solid interface. Kumar and Pratap [20] discussed
the reflection of plane waves in a heat flux dependent microstretch thermoe-
lastic solid half space. Propagation of Rayleigh surface waves in microstretch
thermoelastic continua under inviscid fluid loading have been investigated by
Sharma et al. [21]. The propagation of free vibrations in microstretch ther-
moelastic homogeneous, isotropic, thermally conducting plate bordered with
layers of inviscid liquid on both sides subjected to stress free thermally insu-
lated and isothermal conditions have been investigated by Kumar and Pratap
[22].

Diffusion is defined as the spontaneous movement of the particles from
a high concentration region to the low concentration region and it occurs in
response to a concentration gradient expressed as the change in the concentra-
tion due to change in position. Thermal diffusion utilizes the transfer of heat
across a thin liquid or gas to accomplish isotope separation. Today, thermal
diffusion remains a practical process to separate isotopes of noble gases(e.g.
xexon) and other light isotopes(e.g. carbon) for research purposes. In most of
the applications, the concentration is calculated using what is known as Fick’s
law. This is a simple law which does not take into consideration the mutual
interaction between the introduced substance and the medium into which it is
introduced or the effect of temperature on this interaction. However, there is
a certain degree of coupling with temperature and temperature gradients as
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temperature speeds up the diffusion process. The thermodiffusion in elastic
solids is due to coupling of fields of temperature, mass diffusion and that of
strain in addition to heat and mass exchange with the environment.

Nowacki [23-26] developed the theory of thermoelastic diffusion by using
coupled thermoelastic model. Dudziak and Kowalski [27] and Olesiak and
Pyryev [28], respectively, discussed the theory of thermodiffusion and cou-
pled quasi-stationary problems of thermal diffusion for an elastic layer. They
studied the influence of cross effects arising from the coupling of the fields of
temperature, mass diffusion and strain due to which the thermal excitation
results in additional mass concentration and that generates additional fields
of temperature.
Gawinecki and Szymaniec [29] proved a theorem about global existence of the
solution for a non-linear parabolic thermoelastic diffusion. problem. Unique-
ness and reciprocity theorems for the equations of generalized thermoelastic
diffusion problem, in isotropic media, was proved by Sherief et al. [30] on
the basis of the variational principle equations, under restrictive assumptions
on the elastic coefficients. Due to the inherit complexity of the derivation of
the variational principle equations, Aouadi [31] proved this theorem in the
Laplace transform domain, under the assumption that the functions of the
problem are continuous and the inverse Laplace transform of each is also
unique. Sherief and Saleh [32] investigated the problem of a thermoelastic
half-space in the context of the theory of generalized thermoelastic diffusion
with one relaxation time. Miglani and Kaushal [33] studied the propagation of
transverse and microrotational waves in micropolar generalized thermodiffu-
sion elastic half space. Kumar and Kansal [34] developed the basic equation of
anisotropic thermoelastic diffusion based upon Green-Lindsay model. Kumar
and Kansal [35] investigated the fundamental solution in thermomicrostretch
elastic diffusive solids.

The Propagation of plane waves at the interface of an elastic solid half-
space and a microstretch thermoelastic diffusion solid half-space was studied
by Kumar, Garg and Ahuja [36]. They also discussed the Rayleigh wave
propagation in isotropic microstrech thermoelastic diffusion solid half- space
[37].

For the boundary value problem considered in the context of dipolar bod-
ies with stretch, in the paper [41], the authors use some results from the
theory of semigroups of the linear operators in order to prove the existence
and uniqueness of a weak solution, for the initial boundary value problem of
a porous thermoelastic body, the authors analyze the temporal behaviour of
the solutions [43]. In the paper [42] the problem of reflection and transmission
of plane waves at an imperfect boundary between two thermally conducting
micropolar elastic solid half spaces with two temperature is investigated. In
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the paper [ 44] the authors establish some existence results of the problem at
resonance under some appropriate conditions.

In the first part of the present paper, the propagation of plane waves in an
microstretch generalized thermoelastic diffusion solid have been investigated.
The phase velocity, attenuation coefficient, specific loss and penetration depth
have been computed numerically and depicted graphically. In the second part,
the reflection and refraction phenomenon at a plane interface between an in-
viscid fluid medium and a microstretch thermoelastic diffusion solid medium
has been analyzed. In microstretch thermoelastic diffusion solid medium, po-
tential functions are introduced to the equations. The amplitude ratios of
various reflected and transmitted waves to that of incident wave are derived.
These amplitude ratios are further used to find the expressions of energy ra-
tios of various reflected and refracted waves to that of incident wave. The
graphical representation is given for these energy ratios for different direction
of propagation. The law of conservation of energy at the interface is verified.

2 Basic equations

Following Eringen [7], Sherief et al. [30] and Kumar and Kansal [34], the
equations of motion and the constitutive relations in a homogeneous isotropic
microstretch thermoelastic diffusion solid in the absence of body forces, body
couples, stretch force, and heat sources are given by

(λ+ 2µ+K)∇(∇ · −→u )− (µ+K)∇×∇×−→u +K∇×−→ϕ + λ0∇ϕ∗

−β1(1 + τ1
∂

∂t
)∇T − β2(1 + τ1

∂

∂t
)∇C = ρ

∂2−→u
∂t2

, (1)

(α+ β + γ)∇(∇ · −→ϕ )− γ∇×∇×−→ϕ +K∇×−→u − 2K−→ϕ = ρj
∂2−→ϕ
∂t2

, (2)

α0∇2ϕ∗+ ν1(1 + τ1
∂

∂t
)T + ν2(1 + τ1

∂

∂t
)C−λ1ϕ∗−λ0∇·−→u =

ρj0
2

∂2ϕ∗

∂t2
, (3)

K∗∇2T = β1T0(1 + ετ0
∂

∂t
)∇ · −̇→u + ν1T0(1 + ετ0

∂

∂t
)ϕ̇∗

+ρC∗(1 + τ0
∂

∂t
)Ṫ + aT0(1 + γ1

∂

∂t
)
∂C

∂t
, (4)

Dβ2ekk,ii+Dν2ϕ
∗
,ii+Da(1+τ1

∂

∂t
)T,ii+(1+ετ0

∂

∂t
)
∂C

∂t
−Db(1+τ1

∂

∂t
)C,ii = 0,

(5)
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and constitutive equations are

tij = λur,rδij + µ(ui,j + uj,i) +K(uj,i − eijrϕr) + λ0δijϕ
∗

−β1(1 + τ1
∂

∂t
)Tδij − β2(1 + τ1

∂

∂t
)Cδij , (6)

mij = αϕr,rδij + βϕi,j + γϕj,i + b0emjiϕ
∗
,m, (7)

λ∗i = α0ϕ
∗
,i + b0eijmϕj,m, (8)

where λ, µ, α, β, γ,K, λ0, λ1, α0, b0, are material constants,ρ is the mass den-
sity, −→u = (u1, u2, u3) is the displacement vector and −→ϕ = (ϕ1, ϕ2, ϕ3) is
the microrotation vector, ϕ∗ is the microstretch scalar function,T and T0 are
the small temperature increment and the reference temperature of the body
chosen such that ‖T/T0| << 1,C is the concentration of the diffusion ma-
terial in the elastic body, K∗ is the coefficient of the thermal conductivity,
C∗ is the specific heat at constant strain;D is the thermoelatic diffusion con-
stant, a, b are, respectively, coefficients describing the measure of thermoe-
lastic diffusion effects and of mass diffusion effects, β1 = (3λ + 2µ + K)αt1,
β2 = (3λ + 2µ + K)αc1,ν1 = (3λ + 2µ + K)αt2, ν2 = (3λ + 2µ + K)αc2;
αt1, αt2 are coefficients of linear thermal expansion andαc1, αc2 are coefficients
of linear diffusion expansion, j is the microinertia, j0 is the microinertia of the
microelements,σij and mij are components of stress and couple stress tensors
respectively, λ∗i is the microstress tensor,eij = (ui,j + uj,i)/2 are components
of infinitesimal strain,ekk is the dilatation, δij is the Kronecker delta, τ0, τ1 are
diffusion relaxation times with τ1 ≥ τ0 ≥ 0 and τ0, τ1 are thermal relaxation
times with τ1 ≥ τ0 ≥ 0. Here τ0 = τ0 = τ1 = τ1 = 0 for Coupled Thermoelas-
ticity(CT) model, τ1 = τ1 = 0, ε = 1, γ1 = τ0 for Lord-Shulman(L-S) model
and ε = 0, γ1 = τ0 for Green-Lindsay(G-L) model.

In the above equations, a comma followed by a suffix denotes spatial derivative
and a superposed dot denotes the derivative with respect to time respectively.
For two-dimensional problem, we have

−→u = (u1, u2, u3),−→ϕ = (0, ϕ2, 0). (9)

We define the following dimensionless quantities

(x′1, x
′
3) =

w∗

c1
(x1, x3), (u′1, u

′
3) =

ρc1w
∗

β1T0
(u1, u3), t

′
ij =

t
′
ij

β1T0
, t
′

= w∗t, τ
′
0 = w∗τ0,

τ
′
1 = w∗τ1, τ

0
′

= w∗τ0, τ1
′

= w∗τ1, T
′

=
T

T0
, C
′

=
β2C

ρc21
, (uf

′

1 , u
f ′

3 ) =
ρc1w

∗

β1T0
(uf1 , u

f
3 ),
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ϕ∗
′

=
ρc21
β1T0

ϕ∗, λ∗
′
i =

w∗

c1β1T0
λ∗i , ϕ2′ =

ρc21
β1T0

ϕ2, ϕ
f ′ =

w∗

c21
ϕf , pf

′
=

1

β1T0
pf ,

m
′
ij =

w∗

c1β1T0
mij , P

∗′
ij =

ρc1
β2
1T

2
0

P ∗ij , P
∗f ′ =

ρc1
β2
1T

2
0

P ∗f . (10)

where w∗ =
ρC∗c21
K∗ , c21 = λ+2µ+K

ρ , w∗ is the characteristic frequency of the
medium.

Upon introducing the quantities (1.10) in equations (1.1)-(1.5), with the
aid of (1.9) and after suppressing the primes, we obtain

δ2
∂e

∂x1
+ (1− δ2)∇2u1 − ζ∗1

∂ϕ2

∂x3
+ ζ∗3

∂ϕ∗

∂x1
− τ1t

∂T

∂x1
− ζ∗2 τ1c

∂C

∂x1
=
∂2u1
∂t2

, (11)

δ2
∂e

∂x3
+ (1− δ2)∇2u3 + ζ∗1

∂ϕ2

∂x1
+ ζ∗3

∂ϕ∗

∂x3
− τ1t

∂T

∂x3
− ζ∗2 τ1c

∂C

∂x3
=
∂2u3
∂t2

, (12)

ζ1∇2ϕ2 + ζ2(
∂u1
∂x3
− ∂u3
∂x1

)− ζ3ϕ2 =
∂2ϕ2

∂t2
, (13)

(δ21∇2 − χ∗1)ϕ∗ − χ∗2e+ χ∗3τ
1
t T + χ∗4τ

1
cC =

∂2ϕ∗

∂t2
, (14)

∇2T = l∗1τ
0
e

∂e

∂t
+ l∗2τ

0
e

∂ϕ∗

∂t
+ τ0t

∂T

∂t
+ l∗3τ

0
c

∂C

∂t
, (15)

q∗1∇2e+ q∗4∇2ϕ∗ + q∗2τ
1
t ∇2T + τ0f

∂C

∂t
− q∗3τ1c∇2C = 0, (16)

where,

ζ1 =
γ

jρc21
, ζ2 =

K

jρw∗2
, ζ3 =

2K

jρw∗2
, ζ
∗
1 =

K

ρc21
, ζ
∗
2 =

ρc21
β1T0

, ζ
∗
3 =

λ0

ρc21
,

δ
2
=
λ+ µ

ρc21
, l
∗
1 =

T0β
2
1

ρK∗w∗
, l
∗
2 =

T0β1ν1

ρK∗w∗
, l
∗
3 =

ρc41a

β2K∗w∗
, q
∗
1 =

Dw∗β2
1

ρc41
, q
∗
2 =

Dw∗β2a

β1c21
,

q
∗
3 =

Dbw∗

c21
, q
∗
4 =

Dν2β2w
∗

ρc41
, χ
∗
1 =

2λ

ρj0w∗2
, χ
∗
2 =

2λ0

ρj0w∗2
, χ
∗
3 =

2ν1c
2
1

j0β1w∗2
, χ
∗
4 =

2ν2ρc
4
1

j0β1β2T0w∗2
,

δ
2
1 =

c22
c21
, c

2
2 =

2α0

ρj0
, τ

1
t = 1 + τ1

∂

∂t
, τ

1
c = 1 + τ

1 ∂

∂t
, τ

0
f = 1 + ετ

0 ∂

∂t
, τ

0
t = 1 + τ0

∂

∂t
,

τ
0
e = 1 + ετ0

∂

∂t
, τ

0
c = 1 + γ1

∂

∂t
, e =

∂u1

∂x1

+
∂u3

∂x3

,∇2
=

∂2

∂x2
1

+
∂2

∂x2
3

.

Introducing the potential functions φ and ψ through the relations

u1 =
∂φ

∂x1
− ∂ψ

∂x3
, u3 =

∂φ

∂x3
+
∂ψ

∂x1
, (17)
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in the equations (1.11)− (1.16), we obtain

∇2φ+ ζ∗3ϕ
∗ − τ1t T − ζ∗2 τ1cC =

∂2φ

∂t2
, (18)

(1− δ2)∇2ψ + ζ∗1ϕ2 =
∂2ψ

∂t2
, (19)

(ζ1∇2 − ζ3)ϕ2 − ζ2∇2ψ =
∂2ϕ2

∂t2
, (20)

(δ21∇2 − χ∗1)ϕ∗ − χ∗2∇2φ+ χ∗3τ
1
t T + χ∗4τ

1
cC =

∂2ϕ∗

∂t2
, (21)

∇2T = τ0e
∂

∂t
(l∗1∇2φ+ l∗2ϕ

∗) + τ0t
∂T

∂t
+ l∗3τ

0
c

∂C

∂t
, (22)

q∗1∇4φ+ q∗4∇2ϕ∗ + q∗2τ
1
t ∇2T + τ0f

∂C

∂t
− q∗3τ1c∇2C = 0. (23)

3 Plane wave propagation:

For plane harmonic waves, we assume the solution of the form

(φ, ψ, T, C, ϕ∗, ϕ2) = (φ, ψ, T , C, ϕ∗, ϕ2) exp[ι((x1l1 + x3l3)− ωt)], (24)

where ω is the angular frequency.φ, ψ, T , C, ϕ∗, ϕ2 are undetermined ampli-
tude vectors that are independent of time t and coordinates xm(m = 1, 3). l1
and l3 are the direction cosines of the wave normal to the x1x3- plane with
the property l21 + l23 = 1.

Substituting the values of φ, ψ, T, C, ϕ∗, ϕ2 from equation (2.1) in the equa-
tions (1.18)− (1.23) , we obtain

(w2 − ξ2)φ+ ζ∗3ϕ
∗ − τ11t T − ζ∗2 τ11c C = 0, (25)

(w2 − (1− δ2)ξ2)ψ + ζ∗1ϕ2 = 0, (26)

−ξ2ζ2ψ + (−w2 + ζ1ξ
2 + ζ3)ϕ2 = 0, (27)

χ∗2ξ
2φ+ χ∗3τ

11
t T + (w2 − δ21ξ2 − χ∗1)ϕ∗ + χ∗4(1− ιw)C = 0, (28)

−l∗1τ10e ξ2φ+ (τ10t + ξ2)T + l∗2τ
10
e ϕ∗ + l∗3τ

10
c C = 0, (29)
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q∗1ξ
4φ− q∗4ξ2ϕ∗ − q∗2τ11t ξ2T + (τ10f + q∗3τ

11
c ξ2)C = 0, (30)

where

τ11t = 1− ιωτ1, τ11c = 1− ιωτ1, τ10t = −ιw(1− ιωτ0), τ10c = −ιw(1− ιωγ1),

τ10e = −ιw(1− ιωετ0), τ10f = −ιw(1− ιωετ0).

The system of equations (2.2), (2.5) − (2.7) has a non-trivial solution if the
determinant of the coefficients [φ, T , ϕ∗, C]T vanishes, which yields to the fol-
lowing polynomial characteristic equation in ξ as:

G1ξ
8 +G2ξ

6 +G3ξ
4 +G4ξ

2 +G5 = 0, (31)

where,

G1 = M1 −M11F13, G2 = w2M1 +M2 − F4M5 + F9M8 − F13M12,

G3 = w2M2 +M3 − F4M6 + F9M9 − F13M13,

G4 = w2M3 +M4 − F4M7 + F9M10,

G5 = w2M4,

and

M1 = F6F17,M2 = −F6F10F17 + F7F17 + F6F16 − F8F14 + F6F12F15,

M3 = F5(F11F17−F12F14)−F10(F7F17+F6F16−F8F14)+F7F16+F15(F7F12−F8F11),

M4 = F16(F5F11 − F7F10),M5 = (F2F17 − F3F14),

M6 = F2(F11F17 − F12F14)− F10(F1F17 − F3F14) + F1F16 + F15(F1F12 − F3F11),

M7 = F16(F2F11 − F1F10),M8 = F6(F2F17 − F3F15),

M9 = (F7F17 + F6F16 − F8F14)− F5(F1F17 − F3F14) + F15(F1F8 − F3F7),

M10 = F16(F2F7−F1F5),M11 = −F3F6,M12 = (F2F6F12 +F3F6F10−F1F8 +F3F7),

M13 = F2(F7F12 − F8F11)− F5(F1F12 − F3F11) + F10(F1F8 − F3F7),

F1 = ζ∗3 , F2 = −τ11t , F3 = −ζ∗2 τ11c , F4 = −χ∗2, F5 = χ∗3τ
11
t , F6 = δ21 , F7 = w2 − χ∗1,

F8 = χ∗4(1−ιw), F9 = l∗1τ
10
e , F10 = τ10t , F11 = l∗2τ

10
e , F12 = l∗3τ

10
c , F13 = q∗1 , F14 = q∗2τ

11
t ,

F15 = q∗4 , F16 = τ10f , F17 = −q∗3τ11c
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The system of equations (2.3) and (2.4) has a non-trivial solution if the
determinant of the coefficients [ψ,ϕ2]T vanishes, which yields to the following
polynomial characteristic equation

F1ξ
4 + F2ξ

2 + F3 = 0, (32)

where,

F1 = −ζ1(1− δ2), F2 = −ζ∗1 ζ2, F3 = (ζ3 − w2)(1− δ2)− w2ζ1 + w2(ζ3 − w2).

Solving (2.8) we obtain eight roots of ξ in which four roots ξ1, ξ2, ξ3, ξ4 corre-
sponds to positive x3− direction and represents the four waves in descending
order of their velocities, namely LD-wave, T-wave, MD-wave, LM-wave. Like-
wise, solving (2.9) we obtain four roots of ξ, in which two roots ξ5 and ξ6
correspond to positive x3− direction and other two roots −ξ5 and −ξ6 cor-
respond to negative x3− direction. Now and after, we will restrict our work
to positive x3− direction . Corresponding to roots ξ5 and ξ6 there exist two
waves in descending order of their velocities, namely CD-I and CD-II waves.
We now derive the expressions for phase velocity, attenuation coefficient, spe-
cific loss and penetration depth of these waves.

(i) Phase velocity
The phase velocity is given by

Vi =
ω

|Re(ξi)|
, i = 1, 2, 3, 4, 5, 6 (33)

where V1, V2, V3, V4, V5, V6 are the phase velocities of LD, T, MD, LM, CD-I
and CD-II waves respectively.

(ii) Attenuation coefficient
The attenuation coefficient is defined as

Qi = Im(ξi), i = 1, 2, 3, 4, 5, 6 (34)

where Q1, Q2, Q3, Q4, Q5, Q6 are the attenuation coefficients of LD, T, MD,
LM, CD-I and CD-II, waves respectively.

(iii) Specific loss
The specific loss is the ratio of energy(∆W ) dissipated in taking a specimen

through a stress cycle, to the elastic energy(W ) stored in the specimen when
the strain is a maximum. The specific loss is the most direct method of defining
internal friction for a material. For a sinusoidal plane wave of small amplitude,
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Kolsky[38], shows that the specific loss ∆W/W equals 4π times the absolute
value of the imaginary part of ξ to the real part of ξ, i.e.

Ri = (
∆W

W
)i = 4π

∣∣∣∣Im(ξi)

Re(ξi)

∣∣∣∣ , i = 1, 2, 3, 4, 5, 6 (35)

where R1, R2, R3, R4, R5, R6 are the specific losses of LD, T, MD, LM, CD-I
and CD-II, waves respectively.

(iv) Penetration depth
The penetration depth is defined by

Si =
1

|Im(ξi)|
, i = 1, 2, 3, 4, 5, 6 (36)

where S1, S2, S3, S4, S5, S6 are the attenuation coefficients of LD, T, MD, LM,
CD-I and CD-II, waves respectively.

Particular cases

1. In absence of microstretch effect, the equation (2.8) becomes ,

H1ξ
6 +H2ξ

4 +H3ξ
2 +H4 = 0, (37)

where,
H1 = q∗3τ

11
c − q∗1ζ∗2 τ11c ,

H2 = −q∗3τ10t τ11c − τ10f − l∗3q∗2τ10c τ11t − l∗1q∗3τ10e τ11t τ11c + w2q∗3τ
11
c

−l∗1τ10e ζ∗2 τ
11
c τ11t q∗2 − l∗3q∗1τ10c τ11t + q∗1ζ

∗
2 τ

11
c − l∗1τ10e τ11t τ11c q∗3 ,

H3 = τ10t τ10f − w2q∗3τ
10
t τ11c − w2τ10f − w2l∗3q

∗
2τ

10
c τ11t + τ11t τ10f l∗1τ

10
e ,

H4 = w2τ10f τ10t .

Solving (2.14) we obtain six roots of ξ, in which three roots ξ1, ξ2 and ξ3
corresponds to positive x3− direction and represents the three waves in de-
scending order of their velocities, namely LD-wave, T-wave, MD-wave.

2. In absence of micropolarity effect, the velocity equation (2.9) becomes

(δ2 − 1)ξ2 + w2 = 0. (38)

Solving (2.15) we obtain two roots of ξ, in which one root which corresponds
to positive x3− direction, represents the SV-wave.
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4 Reflection and transmission at the boundary surface

Formulation of the problem
We consider an inviscid fluid half-space (M1) lying over a homogeneous

isotropic, microstretch generalized thermoelastic diffusion solid half-space (M2).
The origin of the cartesian coordinate system (x1, x2, x3) is taken at any point
on the plane surface (interface) and x3− axis point vertically downwards into
the microstretch thermoelastic diffusion solid half-space. The inviscid fluid
half-space (M1) occupies the region x3 ≤ 0 and the region x3 ≥ 0 is occupied
by the microstretch themoelastic diffusion solid half-space (M2) as shown in
Figure 1. We consider plane waves in the x1−x3 plane with wave front parallel
to the x2− axis.

A
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P
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A
5

P
5

contact surface x
3
= 0

Microstretch thermoelastic diffusion 

solid half-space (M
2
) x

3
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Inviscid fluid half-space 

(M
1
) x

3
< 0

Incident (P)
Reflected (P)

A
4

A
3

A
2

A
1

P
4

P
3

P
2

P
1

x
3
-axis

x
1
-axis

Figure 1: Geometry of the problem.

For the propagation of harmonic waves in x1x3− plane, we assume
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[φ, ψ, T, C, ϕ∗, ϕ2](x1, x3, t) = [φ, ψ, T̄ , C̄, ϕ∗, ϕ2]e−ιωt, (39)

where ω is the angular frequency of vibrations of material particles.

Substituting the expressions of φ, ψ, T, C, ϕ∗, ϕ2 given by equation (2.1) in
the equations (1.18)-(1.23), we obtain

[∇2 + ω2]φ̄− τ11t T̄ + ζ∗3ϕ
∗ − ζ∗2 τ11c C̄ = 0, (40)

((1− δ2)∇2 + ω2)ψ̄ + ζ∗1ϕ2 = 0, (41)

ζ2∇2ψ̄ + (−ω2 − ζ1∇2 + ζ3)ϕ2 = 0, (42)

−χ∗2∇2φ̄+ χ∗3τ
11
t T̄ + r1ϕ

∗ + r2C = 0, (43)

l∗1τ
10
e ∇2φ̄+ (τ10t −∇2)T + l∗2τ

10
e ϕ̄∗ + l∗3τ

10
c C̄ = 0, (44)

q∗1∇4φ̄+ q∗2τ
11
t ∇2T̄ + q∗4∇2ϕ̄∗ + (τ10f − q∗3τ11c ∇2)C̄ = 0, (45)

where, r1 = δ21∇2 − χ∗1 + w2, r2 = χ∗4(1− ιw).

Eliminating [ϕ, T , ϕ∗, C]T from the system of equations (3.2), (3.5)-(3.7), we
obtain

[∇8 +B1∇6 +B2∇4 +B3∇2 +B4]φ = 0, (46)

where,

Bi =
Ai
A
, (i = 1, 2, 3, 4),

A = g∗1 − a14g∗14, A1 = g∗2 + g∗1w
2 − a12g∗6 + a13g

∗
9 − a14g∗12,

A2 = g∗3 +g∗2w
2−a12g∗7 +a13g

∗
10−a14g∗13, A3 = g∗4 +g∗3w

2−a12g∗8 +a13g
∗
11, A4 = g∗4w

2

g∗1 = −δ21a46,
g∗2 = a23a46 − a24a43 + δ21(a32a46 + a45 + a34a42), g∗4 = a45(a22a33 + a23a32),

g∗3 = −a33(a22a46 + a24a42)− a23(a32a46 + a45 + a34a42)

+a43(a24a32 − a22a34)− δ21a32a45, g∗6 = δ21(a31a46 + a41a34),

g∗7 = −a33(a21a46 +a24a41)−a23(a31a46 +a34a41) +a43(a24a31−a21a34)− δ21a31a45,
g∗8 = a45(a23a31 + a21a33), g∗9 = a24a41 + a21a46,

g∗10 = −a21(a32a46 + a45 + a34a42) + a22(a31a46 + a34a41) + a24(a31a42 − a32a41),

g∗11 = a45(a21a32 − a22a31), g∗12 = −(a23a41 + a21a43) + δ21(a31a42 − a41a32),

g∗13 = a33(a22a41−a21a42)+a23(a32a41−a31a42)+a43(a21a32−a22a31), g∗14 = δ21a41,

a11 = ∇2 + w2, a21 = −χ∗2, a31 = l∗1τ
10
e , a41 = q∗1 , a12 = −τ11t , a22 = χ∗3τ

11
t ,

a32 = τ10t , a42 = q∗2τ
11
t , a13 = ζ∗3 , a23 = χ∗1 − w2, a33 = l∗2τ

10
e ,
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a14 = −ζ∗2 τ11c , a24 = r2, a34 = l∗3τ
10
c , a43 = q∗4∇2,

a45 = τ10f , a46 = q∗3τ
11
c , a44 = (a45 − a46∇2).

The general solution of equation (3.8) can be written as

φ̄ = φ̄1 + φ̄2 + φ̄3 + φ̄4, (47)

where the potentials φ̄i, i = 1, 2, 3, 4 are solutions of wave equations, given by

[∇2 +
ω2

V 2
i

]φ̄i = 0, i = 1, 2, 3, 4. (48)

Here V1, V2, V3 and V4 are the velocities of four longitudinal waves, that is,
longitudinal displacement wave (LD), thermal wave (T), mass diffusion wave
(MD) and longitudinal microstretch wave (LM) and derived from the roots of
the biquadratic equation in V 2, given by

B4V
8 −B3ω

2V 6 +B2ω
4V 4 −B1ω

6V 2 + w8 = 0. (49)

Making use of equation (3.9) in the equations (3.2), (3.5)-(3.7) with the aid
of equations (3.1) and (3.10), the general solutions for φ, T, ϕ∗, and C are
obtained as

[φ, T, ϕ∗, C] =

4∑
i=1

[1, k1i, k2i, k3i]φi, (50)

where,

k1i = (g∗6w
6−g∗7w4V 2

i +g∗8w
2V 4
i )/kd, k2i = −(g∗9w

6+g∗10w
4V 2
i +g∗11w

2V 4
i )/kd,

k3i = (−g∗14w8 + g∗12w
6V 2
i − g∗13w4V 4

i )/(V 2
i k

d),

kd = (g∗1w
6 + g∗2w

4V 2
i + g∗3w

2V 4
i + g∗4V

6
i ), i = 1, 2, 3, 4.

Eliminating [ψ,ϕ2]T from the system of equations (3.3)-(3.4), we obtain

[∇4 +A∗∇2 +B∗]ψ = 0, (51)

where,
A∗ = (w2ζ1 + ζ∗1 ζ2 − (1− δ2)(ζ3 + w2))/(1− δ2)ζ1,

B∗ = w2(w2 − ζ3)/(1− δ2)ζ1,

The general solution of equation (3.13) can be written as

ψ = ψ5 + ψ6 (52)
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where the potentials ψi, i = 5, 6 are solutions of wave equations, given by

[∇2 +
ω2

V 2
i

]ψi = 0, i = 5, 6. (53)

Here (Vi, i = 5, 6) are the velocities of two coupled transverse displacement and
microrotational (CD-I, CD-II) waves and derived from the root of quadratic
equation in V 2, given by

B∗V 4 −A∗w2V 2 + w4 = 0, (54)

Making use of equation (3.14) in the equations (3.3)-(3.4) with the aid of
equations (3.1) and (3.15), the general solutions for ψ and ϕ2 are obtained as

[ψ,ϕ2] =

6∑
i=5

[1, n1i]ψi, (55)

where,

n1i =
ζ2w

2

(ζ3 − w2)V 2
i + ζ1w2

, for i = 5, 6

Following Achenbach [39], the field equations in terms of velocity potential for
inviscid fluid are

pf = −ρf φ̇f , (56)

[∇2 − 1

αf2p

∂2

∂t2
]φf = 0, (57)

−→u f = ∇φf , (58)

where αf2p = λf/ρf and λf is the bulk modulus, ρf is the density of the liquid,
−→u f is the velocity vector and pf is the acoustic pressure of the inviscid fluid.

For two dimensional problem, −→u f = (uf1 , 0, u
f
3 ) can be written in terms of

velocity potential as

uf1 =
∂φf

∂x1
, uf3 =

∂φf

∂x3
. (59)

Applying the dimensionless quantities defined by (1.10) in equations (3.18)
and (3.19) and after suppressing the primes, we obtain

pf = −ζφ̇f , (60)

[∇2 − 1

vf2p

∂2

∂t2
]φf = 0, (61)
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where,
ζ = ρfc21/β1T0, v

f
p = αfp/c1.

We assume the solution of (3.23) as

φf (x1, x3, t) = φ
f
e−ιwt. (62)

Using (3.24) in (3.23), we have

[∇2 +
w2

vf2p
]φf = 0. (63)

Reflection and transmission
We consider a plane harmonic longitudinal wave (P) propagating through the
inviscid fluid half-space and is incident at the interface x3 = 0 as shown in
Figure 1. Corresponding to incident wave, one homogeneous longitudinal wave
(P) is reflected in inviscid fluid half-space and six inhomogeneous waves (LD,
T, MD, LM, CD-I and CD-II) are transmitted in isotropic microstretch ther-
moelastic diffusion solid half-space.

In inviscid fluid half-space, the potential functions satisfying equation (3.25)
can be written as

φf = Af0e
[ιω((x1 sin θ0+x3 cos θ0)/v

f
p )−t] +Af1e

[ιω((x1 sin θ1−x3 cos θ1)/v
f
p )−t], (64)

The coefficients Af0 and Ae1 represent the amplitudes of the incident P and
reflected P waves respectively.

Following Borcherdt [40], in a homogeneous isotropic microstretch thermoe-
lastic diffusion half-space, potential functions satisfying equations (3.10) and
(3.15) can be written as

[φ, T, ϕ∗, C] =

4∑
i=1

[1, k1i, k2i, k3i]Bie
( ~Ai.~r)e{ι(

~Pi.~r−ωt)}, (65)

[ψ, φ2] =

6∑
i=5

[1, nip]Bie
( ~Ai.~r)eι(

~Pi.~r−ωt). (66)

The coefficients Bi, i = 1, 2, 3, 4, 5, 6 represent the amplitudes of transmitted
waves. The propagation vector ~Pi, i = 1, 2, 3, 4, 5, 6 and attenuation factor
~Ai, i = 1, 2, 3, 4, 5, 6 are given by

~Pi = ξRx̂1 + dViRx̂3, ~Ai = −ξI x̂1 − dViI x̂3, i = 1, 2, 3, 4, 5, 6 (67)
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where,

dVi = dViR + ιdViI = p.v.(
ω2

V 2
i

− ξ2)1/2, i = 1, 2, 3, 4, 5, 6. (68)

and ξ = ξR + ιξI is a complex wave number. The subscripts R and I denote
the real and imaginary parts of the corresponding complex quantity and p.v.
stands for the principal value of the complex quantity obtained after square
root. ξR ≥ 0 ensures propagation in the positive x1-direction. The complex
wave number ξ in the microstretch thermoelastic diffusion solid medium is
given by

ξ =
∣∣∣~Pi∣∣∣ sin θ′i − ι ∣∣∣ ~Ai∣∣∣ sin(θ′i − γi), i = 1, 2, 3, 4, 5, 6, (69)

where γi, i = 1, 2, 3, 4, 5, 6 is the angle between the propagation and atten-
uation vector and θ′i, i = 1, 2, 3, 4, 5, 6 is the angle of refraction in medium
II.

Boundary conditions
The boundary conditions are the continuity of stress and displacement com-
ponents, vanishing of the gradient of temperature, mass concentration, the
tangential couple stress and microstress components. Mathematically these
can be written as

(i) Continuity of normal stress component

t33 = −pf , (70)

(ii) Continuity of tangential stress component

t33 = 0, (71)

(iii) Continuity of normal displacement component

uf3 = u3, (72)

(iv)Thermally insulated boundary

∂T

∂x3
= 0, (73)

(v)Impermeable boundary
∂C

∂x3
= 0. (74)
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(vi)Vanishing of the tangential couple stress component

m32 = 0 (75)

(vii) Vanishing of the microstress component

λ∗3 = 0 (76)

Making the use of potentials given by equations (3.26)-(3.28), we find that the
boundary conditions are satisfied if and only if

ξR =
ω sin θ0
α

=
ω sin θ1
α

, (77)

and
ξI = 0, (78)

It means that waves are attenuating only in x3-direction. From equation

(3.31), it implies that if
∣∣∣ ~Ai∣∣∣ 6= 0, then γi = θ′i, i = 1, 2, 3, 4, 5, 6, that is, at-

tenuated vectors for the six transmitted waves are directed along the x3-axis.

Using equations (3.26)-(3.28) in the boundary conditions (3.32)-(3.38) and
with the aid of equations (1.6)-(1.10), (1.17), (3.21)-(3.22) and (3.39)-(3.40),
we get a system of seven non-homogeneous equations which can be written as

7∑
j=1

dijZj = gi, (79)

where Zj = |Zj | eιψ
∗
j , |Zj | , ψ∗j , j = 1, ...., 6, 7 represent amplitude ratios and

phase shift of reflected P-, transmitted LD-, transmitted T-, transmitted MD-,
transmitted LM-, transmitted CD I -, transmitted CD II - waves to that of
amplitude of incident wave, respectively.

d11 =
−ιζ∗2ρfc21

ω
, d16 = −(2µ+K)

ξR
ω

dV5

ω
, d17 = −(2µ+K)

ξR
ω

dV6

ω
,

d21 = 0, d26 = µ[(
ξR
ω

)2 − (
dV5

ω
)2] +K(

dV5

ω
)2 − Knp5

ω2
,

d27 = µ[(
ξR
ω

)2 − (
dV6

ω
)2] +K(

dV6

ω
)2 − Knp6

ω2
, d31 =

ιdVα
ω

,

d36 = 0, d37 = 0, d41 = 0, d46 = 0, d47 = 0, d51 = 0, d56 = 0, d57 = 0, d61 = 0, d71 = 0,

d1j = −λ(
ξR
ω

)2 − ρc21(
dVj
ω

)2 − ρc21(
k1jτ

11
t + ζ∗2k3jτ

11
c

ω2
) + λ0

k2j
ω2

,

d2j = (2µ+K)(
ξR
ω

)(
dVj
ω

), d3j = −(
dVj−1

ω
),
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d4j = k1(j−1)(
dVj−1

ω
), d5j = k3(j−1)(

dVj−1

ω
), d6j = b0k2(j−1)

ξR
ω
,

d7j = α0k2(j−1)
dVj−1

ω
, forj = 2, 3, 4, 5,

d6j = γ
dVj−2

ω
n(j−1)p, d7j = −b0n(j−1)p

ξR
ω
, forj = 6, 7,

dVα
ω

= (
1

α2
− (

ξR
ω

)2)1/2 = (
1

α2
− (

sin θ0
α

)2)1/2,

and
dVj
ω

= p.v.(
1

V 2
j

− (
sin θ0
α

)2)1/2, j = 1, 2, 3, 4, 5, 6, 7.

Here p.v. is evaluated with restriction dVjI ≥ 0 to satisfy decay con-
dition in the microstretch thermoelastic diffusion medium. The coefficients
gi, i = 1, ..., 7 on right side of the equation (3.41) are given by

gi = (−1)id1i, for i = 1, 3 and gi = 0, for i = 2, 4, 5, 6, 7 (80)

Now we consider a surface element of unit area at the interface between
two media. The reason for this consideration is to calculate the partition of
energy of the incident wave among the reflected and transmitted waves on the
both sides of surface. Following Achenbach [39], the energy flux across the
surface element, that is, rate at which the energy is communicated per unit
area of the surface is represented as

P ∗ = tlmlmu̇l, (81)

where tlm is the stress tensor, lm are the direction cosines of the unit normal
l̂ outward to the surface element and u̇l are the components of the particle
velocity.

The time average of P ∗ over a period, denoted by < P ∗ >, represents the
average energy transmission per unit surface area per unit time. Thus, on the
surface with normal along x3-direction, the average energy intensities of the
waves in the inviscid fluid half-space are given by

< P ∗f >= Re < p >f .Re(uf3 ). (82)

Following Achenbach [39], for any two complex functions f and g, we have

< Re(f).Re(g) >=
1

2
Re(f.ḡ). (83)
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The expressions for energy ratios E1 for the reflected P- is given by

E1 = −< P ∗f >

< P ∗f0 >
, (84)

where

< P ∗f1 >=
ω2ζ∗2ρ

fc21

2β1T0v
f
p

|Z1|2 Re(cos θ1),

and

For incident P-wave

< P ∗f0 >=
ω2ζ∗2ρ

fc21

2β1T0v
f
p

cos θ0, (85)

are the average energy intensities of the reflected P- and incident P-waves re-
spectively. In equation (3.46), negative sign is taken because the direction of
reflected waves is opposite to that of incident wave.

For microstretch thermoelastic diffusion solid half-space, the average energy
intensities of the waves on the surface with normal along x3-direction, are
given by

< P ∗ij >= Re < t >
(i)
13 .Re(u̇

(j)
1 ) + Re < t >

(i)
33 .Re(u̇

(j)
3 )

+Re < m >
(i)
32 .Re(φ̇

(j)
2 ) + Re < λ∗3 >

(i) .Re(ϕ̇∗(j)). (86)

The expressions for energy ratios Eij , i, j = 1, 2, 3, 4, 5, 6 for the transmitted
waves are given by

Eij =
< P ∗ij >

< P ∗f0 >
, i, j = 1, 2, 3, 4, 5, 6, (87)

where,

< P ∗ij >= −ω
4

2
Re[(2µ+K)

dVi
ω

ξR
ω

ξ̄R
ω

+ {λ(
ξR
ω

)2 + ρc21(
dVi
ω

)2

+
ρc21(k1iτ

11
t + ζ∗2k3iτ

11
c )

ω2
− λ0k2i

ω2
} d̄V j
ω

+
α0k2ik2jw

∗2

ρω2c41

dV i
ω

]Zi+2Z̄j+2,

i, j = 1, 2, 3, 4.

< P ∗ij >= −ω
4

2
Re[(2µ+K)

dVi
ω

ξR
ω

ξ̄R
ω
−{µ(

ξR
ω

)2−(µ+K)(
dVi
ω

)2+
Knip
ω2
} d̄V j
ω

+
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γnipnjpw
∗2

ρω2c41

dV i
ω

]Zi+2Z̄j+2, , i, j = 5, 6.

< P ∗i5 >= −ω
4

2
Re[−(2µ+K)

dVi
ω

ξR
ω

d̄V 5

ω
+ {λ(

ξR
ω

)2 + ρc21(
dVi
ω

)2

+
ρc21(k1iτ

11
t + ζ∗2k3iτ

11
c )

ω2
−λ0k2i

ω2
} ξ̄R
ω
−b0k2in5pw

∗2

ρω2c41

ξR
ω

]Zi+2Z̄7, , i, j = 1, 2, 3, 4.

< P ∗i5 >= −ω
4

2
Re[(2µ+K)

dVi
ω

ξR
ω

ξ̄R
ω
−{µ(

ξR
ω

)2−(µ+K)(
dVi
ω

)2+
Knip
ω2
} d̄V 5

ω
−

γnipn5pw
∗2

ρω2c41

dV i
ω

]Zi+2Z̄7, , i, j = 5, 6.

< P ∗i6 >= −ω
4

2
Re[−(2µ+K)

dVi
ω

ξR
ω

d̄V 6

ω
+ {λ(

ξR
ω

)2 + ρc21(
dVi
ω

)2

+
ρc21(k1iτ

11
t + ζ∗2k3iτ

11
c )

ω2
−λ0k2i

ω2
} ξ̄R
ω
−b0k2in6pw

∗2

ρω2c41

ξR
ω

]Zi+2Z̄8, , i, j = 1, 2, 3, 4.

< P ∗i6 >= −ω
4

2
Re[(2µ+K)

dVi
ω

ξR
ω

ξ̄R
ω
−{µ(

ξR
ω

)2−(µ+K)(
dVi
ω

)2+
Knip
ω2
} d̄V 6

ω
−

γnipn6pw
∗2

ρω2c41

dV i
ω

]Zi+2Z̄8, , i, j = 5, 6.

< P ∗5j >= −ω
4

2
Re[(2µ+K)

dV5
ω

ξR
ω

d̄V j
ω

+{µ(
ξR
ω

)2−(µ+K)(
dV5
ω

)2+
Kn5p
ω2
} ξ̄R
ω
−

b0n5pk2jw
∗2

ρω2c41

ξR
ω

]Z7Z̄j+2, , i, j = 1, 2, 3, 4.

< P ∗5j >= −ω
4

2
Re[(2µ+K)

dV5
ω

ξR
ω

ξ̄R
ω
−{µ(

ξR
ω

)2−(µ+K)(
dVj
ω

)2+
Kn5p
ω2
} d̄V j
ω

+

γn5pnjpw
∗2

ρω2c41

dV 5

ω
]Z7Z̄j+2, , i, j = 5, 6.

< P ∗6j >= −ω
4

2
Re[(2µ+K)

dV6
ω

ξR
ω

d̄V j
ω

+{µ(
ξR
ω

)2−(µ+K)(
dV6
ω

)2+
Kn6p
ω2
} ξ̄R
ω
−
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b0n6pk2jw
∗2

ρω2c41

ξR
ω

]Z8Z̄j+2, , i, j = 1, 2, 3, 4.

< P ∗6j >= −ω
4

2
Re[(2µ+K)

dV6
ω

ξR
ω

ξ̄R
ω
−{µ(

ξR
ω

)2−(µ+K)(
dVj
ω

)2+Knjp}
d̄V j
ω

+

γn6pnjpw
∗2

ρω2c41

dV 6

ω
]Z8Z̄j+2, , i, j = 5, 6.

The diagonal entries of energy matrix Eij in equation (3.49) represent the
energy ratios of the waves, whereas sum of the non-diagonal entries of Eij
give the share of interaction energy among all the transmitted waves in the
medium and is given by

ERR =

6∑
i=1

(

6∑
j=1

Eij − Eii). (88)

The energy ratios E1, diagonal entries and sum of non-diagonal entries of
energy matrix Eij , that is, E11, E22, E33, E44, E55, E66 and ERR yield the
conservation of incident energy across the interface, through the relation

E1 + E11 + E22 + E33 + E44 + E55 + E66 + ERR = 1. (89)

Special Case
In absence of microstretch effect in equations (3.41), (3.46) and (3.49), we

obtain the corresponding amplitude and energy ratios at the interface of in-
viscid fluid half-space and micropolar thermoelastic diffusion solid half-space.

Numerical results and Discussion
The analysis is conducted for a magnesium crystal-like material.Following [41],
the values of physical constants are

λ = 9.4× 1010Nm−2, µ = 4.0× 1010Nm−2,K = 1.0× 1010Nm−2,

ρ = 1.74× 103Kgm−3, γ = 0.779× 10−9N, j = 0.2× 10−19m2,

Thermal and diffusion parameters are given by

C∗ = 1.04× 103JKg−1K−1,K∗ = 1.7× 106Jm−1s−1K−1, αt1 = 2.33× 10−5K−1,

αt2 = 2.48× 10−5K−1, αc1 = 2.65× 10−4m3Kg−1, αc2 = 2.83× 10−4m3Kg−1,

T0 = 0.298× 103K, a = 2.9× 104m2s−2K−1, b = 32× 105Kg−1m5s−2,
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D = 0.85× 10−8Kgm−3s,

The values of relaxation times are taken as:

τ0 = 0.02s, τ1 = 0.01s, τ0 = 0.03s, τ1 = 0.04s.

and the microstretch parameters are taken as

j0 = 0.19× 10−19m2, α0 = 0.779× 10−9N, b0 = 0.5× 10−9N,

λ0 = 0.5× 1010Nm−2, λ1 = 0.5× 1010Nm−2,

The fluid parameters are taken as:

λf = 2.1904× 109Kgm−1s−2, ρf = 1.0× 103Kgm−1s−2,

The software Matlab 7.0.4 has been used to determine the values of phase
velocity, attenuation coefficient, specific loss and penetration depth of plane
waves, i.e. LD, T, MD, LM, CD-I and CD-II. The variations of phase velocity,
attenuation coefficients, specific loss and penetration depth with respect to
frequency has been shown in Figures1.1-1.6, 1.7-1.10,1.11-1.14 and 1.15-1.18
respectively. In all the Figures, MSLS and MSGL corresponds respectively to
L-S and G-L theory of microstretch generalized thermoelastic diffusion solid
whereas MLLS and MLGL corresponds respectively to L-S and G-L theory
of micropolar generalized thermoelastic diffusion solid. In the Figures 1.1-1.4
and Figs 1.7-1.18, slant line, horizontal square, horizontal line and slant square
corresponds to MSLS, MLLS, MSGL and MLGL. In Figure 1.6, vertical and
slant lines correspond to phase velocities of CDI and SV waves respectively
whereas vertical line in Figure 1.7 is for the phase velocity of CDII wave.
The software Matlab 7.0.4 has been used to determine the values of phase
velocity, attenuation coefficient, specific loss and penetration depth of plane
waves, i.e. LD, T, MD, LM, CD-I and CD-II. The variations of phase veloc-
ity, attenuation coefficients, specific loss and penetration depth with respect
to frequency has been shown in Figures 2-7,8-11,12-15 and 16-19 respectively.
In all the Figures, MSLS and MSGL corresponds respectively to L-S and G-L
theory of microstretch generalized thermoelastic diffusion solid whereas MLLS
and MLGL corresponds respectively to L-S and G-L theory of micropolar gen-
eralized thermoelastic diffusion solid. In the Figures 2-5 and Figures 8-19, slant
line, horizontal square, horizontal line and slant square corresponds to MSLS,
MLLS, MSGL and MLGL. In Figure 6, vertical and slant lines correspond
to phase velocities of CDI and SV waves respectively whereas vertical line in
Figure 7 is for the phase velocity of CDII wave.
Also using software Matlab 7.0.4, the values of energy ratio E1 and energy ma-
trix Eij , ı, j = 1, 2, 3, 4, 5, 6 defined in the previous section for different values
of incident angle (θ0 ) ranging from 0 to 900 are determined for fixed fre-
quency ω = 2× π × 100Hz. Corresponding to incident P wave, the variation
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of energy ratios with respect to angle of incident have been plotted in Fig-
ures 20-27. In these Figures of microstretch thermoelastic diffusion medium
the graphs for L-S and G-L theories are represented by the word MSLS and
MSGL respectively.

Phase Velocity
Figures 2-7 show the variation of phase velocities (V1, V2, V3, V4, V5, V6) of

different waves with respect to ω. It is clear from Figure 2 that phase ve-
locity V1 increases continuously for both LS and GL theories under the effect
of microstretch. In absence of microstretch effect V1 increase but with small
difference in magnitudde values. Also the values obtained by LS theory are
higher in comparison to GL theory. Figure 3 depicts that phase velocity V2
initially increase but then shows the constant behavior for both LS and GL
theories under the effect of microstretch whereas in absence of microstretch,
it first increase sharply and then decreases. The values of phase velocity for
LS theory remains more in comparison to the GL theory. Figure 4 exhibits
that initially for LS theory, phase velocity V3 decrease sharply but increase
smoothly as ω increases further whereas in absence of microstretch effect, it
increases continuously. Figure 5 depicts the variation of phase velocity V4 for
micropolar thermoelastic diffusion. It shows that V4 initially fluctuates but
increase for large values of ω. Also it attains higher values for LS theory in
comparison to GL theory. It is clear from Figure 6 phase velocity V5 shows
small variation for CDI and SV waves and values of V5 for CDI wave remain
more in comparison to SV wave. Figure 7 shows that for CDII wave, phase
velocity V6 increase continuously with increase in ω. The values of phase ve-
locity V1 for MSLS and MSGL are demagnified by dividing the original values
by 10 and the values of phase velocity V2 for MLLS and MLGL are defagnified
on dividing by 100. Also the values of V6 are magnified by multiplying with
105.

Attenuation Coefficient
Figures 8-11 show the variation of attenuation coefficient of different waves

with respect to ω . Figure 8 shows that attenuation coefficient Q1 increase
sharply for microstretch thermoelastic diffusion whereas in absence of mi-
crostretch, it increase initially and then becomes constant. Figure 9 shows
that the attenuation coefficient Q2 increase sharply in absence of microstretch
effect whereas for microstretch thermoelastic diffusion, it increase initially and
then becomes constant. It is clear from Figure 10 that for microstretch ther-
moelastic diffusion attenuation coefficient Q3 initially decrease but increase
continuously for large values of ω . But in absence of microstretch effect, Q3

shows the negligible variation. Figure 11 depicts that attenuation coefficient
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Q4 increase sharply for small values of ω and shows constant behavior for large
values of ω . The values of attenuation coefficient Q1 for MSLS and MSGL
are contracted by dividing with 10.

Specific Loss
Figures 12-15 show the variation of specific loss of different waves with

respect to ω. Figure 12 shows that specific loss R1 decrease sharply for small
values of ω but decrease with small variation as increases further for LS and
GL theories of microstretch thermoelastic diffusion medium. In absence of
microstretch effect R1 increases for LS theory and decreases for GL theory.
Figure 13 depicts that values of R2 increase initially and then shows minimum
variation for microstretch thermoelastic diffusion medium whereas for microp-
olar thermoelastic diffusion medium, it increases continuously. The values of
R2 for LS theory remains more in comparison to GL theory. Figure 14 shows
that values of R3 first decrease sharply and then shows minimum variation
and appears to be constant. The values of R3 for microstretch theory remains
less in comparison to micropolar thermoelastic diffusion theory. It is clear
from Figure 15 that for microstretch thermoelastic diffusion medium with GL
theory, the values of R4 increase continuously whereas for LS theory, R4 shows
a small increase initially and constant behavior is observed for large values of
ω . The values of specific loss R1 for MSLS and MSGL are demagnified on
dividing by 103. Also the values of R2 for MLLS and MLGL are divided by
103.

Penetration Depth
Figures 16-19 show the variation of penetration depth of different waves

with respect to ω . Figure 16 shows that for microstretch thermoelastic diffu-
sion theory, the values of S1 decrease smoothly and shows constant behavior
for large values of ω. In absence of microstretch effect, minimum variation is
observed. It is clear from Figure 17 that for small values of ω , values of S2

decrease sharply and becomes constant as ω increases further. The variation
in values of S2 remains similar for MSLS, MLLS, MSGL and MLGL theories
with difference in their magnitude values. Figure 18 shows that the behavior
and variation in values of S3 is similar as shown by S2 in Figure15 but with
different magnitude values. Figure 19 exhibits that for small values of ω , S4

decrease sharply for microstretch thermoelastic diffusion medium and becomes
constant as ω increases further.

Energy Ratios
Figures 20-27 depicts the variation of energy ratios with the angle of inci-

dence θ0.
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Figure 20 exhibits the variation of energy ratio E1 with the angle of in-
cidence θ0. It shows that the values of E1 for both cases MDLS and MDGL
decrease with the increase in θ0 from 0 to 200 and then increase sharply for
200 < θ0 ≤ 300 and further decrease slowly and appears to be constant. The
maximum and minimum value of E1 for MDLS are higher than MDGL.

Figure 21 depicts the variation of energy ratio E11 with θ0 and it shows
that the values of E11 for the case of MDGL are similar to MDLS but the
corresponding values are different in magnitude. It is observed that there is a
sharp increase and decrease in the values for 0 to 200 and then decrease with
small variation in the magnitude values. Values for MDGL are higher than
MDLS.

Figure 22 exhibits the variation of energy ratio E22 with θ0 and it shows
that the maximum value of E22 is attained for MDGL. Also it increase sharply
at θ0 = 6.50 after that shows sudden decrease and variation in values is small
for θ0 > 200.

Figure 23 depicts the variation of energy ratio E33 with θ0 and it indicates
the values of E33 for the case of MDLS are large as compared to the MDGL
within the whole range of θ0, though the maximum value of E33 can be noticed
within the range 0 ≤ θ0 ≤ 300 for both the cases.

Figure 24 depicts the variation of energy ratio E44 with θ0. It shows that
the values of E44 for both cases MDLS and MDGL increase initially with the
increase of θ0 from 0 to 70 and then decrease as θ0 increase further. The value
of E44 in case of MDGL are higher than MDLS.

Figure 25 exhibits the variation of energy ratio E55 with θ0 and it indicates
the behavior of the graph is nearly equivalent to that of Figure 24 but the
corresponding values are different in magnitude.

Figure 26 shows the variations of E66 with θ0 and it indicates that the value
of E66 for both MDLS and MDGL shows the same behavior and variation as
E33 but with different magnitude values.

Figure 27 shows the variation of interaction energy ratio ERR with θ0 and
it indicates the values of ERR for the case of MDLS are less as compared to
MDGL within the whole range of θ0 . The values of interaction energy de-
crease initially for 0 ≤ θ0 ≤ 50 thereafter increase sharply at θ0 = 70 and for
θ0 > 70, increase in values is minimum and attain value nearly to zero.

Conclusions
The propagation of plane waves in a homogeneous, isotropic microstretch

generalized thermoelastic diffusion solid medium of infinite extent is stud-
ied. The phenomenon of reflection and refraction of obliquely incident elastic
waves at the interface between an inviscid fluid half-space and a microstretch
thermoelastic diffusion solid half-space has also been studied. The six waves
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in microstretch thermoelastic diffusion medium are identified and explained
through different wave equations in terms of displacement potentials.

The phase velocities, attenuation coefficients, specific loss and penetration
depth of longitudinal waves are computed and presented graphically with re-
spect to frequency. The values of V1, Q1, R1 and S1 remains more for mi-
crostretch thermoelastic diffusion medium whereas for other roots values re-
mains more in absence of microstretch effect.

The energy ratios of different reflected and transmitted waves to that of inci-
dent wave are computed numerically and presented graphically with respect
to the angle of incidence.

From numerical results, we conclude that the effect of angle of incidence on
the energy ratios of the reflected and transmitted waves is significant. It is
evident that, the values of energy ratios attained their optimum values within
the range 0 ≤ θ0 < 200 in almost all Figs related to L-S and G-L theories.
In the range 200 ≤ θ0 < 900 variation in values of energy ratios is less as
compared to 0 ≤ θ0 < 200 , where the rapid variation is observed. Moreover,
the magnitude of energy ratios , E1, E33, E66 , for L-S theory are more as
compared to G-L theory and for the other energy ratios, behavior of L-S and
G-L theories is opposite. The sum of all energy ratios of the reflected waves,
transmitted waves and interference between transmitted waves is verified to
be always unity which ensures the law of conservation of incident energy at
the interface.
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Figure 2: Variations of phase velocity V1 with respect to frequency ω

Figure 3: Variations of phase velocity V2 with respect to frequency ω
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Figure 4: Variations of phase velocity V3 with respect to frequency ω

Figure 5: Variations of phase velocity V4 with respect to frequency ω



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 155

Figure 6: Variations of phase velocity V5 with respect to frequency ω

Figure 7: Variations of phase velocity V6 with respect to frequency ω
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Figure 8: Variations of phase velocity Q1 with respect to frequency ω

Figure 9: Variations of phase velocity Q2 with respect to frequency ω
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Figure 10: Variations of phase velocity Q3 with respect to frequency ω

Figure 11: Variations of phase velocity Q4 with respect to frequency ω
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Figure 12: Variations of phase velocity R1 with respect to frequency ω

Figure 13: Variations of phase velocity R2 with respect to frequency ω
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Figure 14: Variations of phase velocity R3 with respect to frequency ω

Figure 15: Variations of phase velocity R4 with respect to frequency ω
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Figure 16: Variations of phase velocity S1 with respect to frequency ω

Figure 17: Variations of phase velocity S2 with respect to frequency ω



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 161

Figure 18: Variations of phase velocity S3 with respect to frequency ω

Figure 19: Variations of phase velocity S4 with respect to frequency ω
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Figure 20: Variations of energy ratio E1 with respect to angle of incidence θ0

Figure 21: Variations of energy ratio E11 with respect to angle of incidence θ0
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Figure 22: Variations of energy ratio E22 with respect to angle of incidence θ0

Figure 23: Variations of energy ratio E33 with respect to angle of incidence θ0
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Figure 24: Variations of energy ratio E44 with respect to angle of incidence θ0

Figure 25: Variations of energy ratio E55 with respect to angle of incidence θ0
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Figure 26: Variations of energy ratio E66 with respect to angle of incidence θ0

Figure 27: Variations of energy ratio ERR with respect to angle of incidence
θ0



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 166

References

[1] Lord, H.W. and Shulman, Y., A generalized dynamical theory of thermoe-
lasticity. Journal of Mechanics and Physics of Solids 15, 299-309, 1967.

[2] A.E. Green and K.A. Lindsay, Thermoelasticity, J. Elasticity, 2(1972)
1-7.

[3] A. C. Eringen, Mechanics of micromorphic materials, in: Gortler, H.
(ed.), Proceedings of the 2nd International Congress of Applied Mechan-
ics, Springer, Berlin (1966) 131-138.

[4] A. C. Eringen, Mechanics of micromorphic continua, in: Kroner, E. (ed.),
Mechanics of Generalized Continua, IUTAM Symposium, Freudenstadt-
Stuttgart, Springer, Berlin (1968) 18-35.

[5] A. C. Eringen, Micropolar elastic solids with stretch, in: Prof. Dr. Mus-
taafa Inan Anisiana, Ari Kitabevi Matbassi 24 (1971) 1-18.

[6] A. C. Eringen, Theory of thermo-microstretch elastic solids, Int. J. Eng.
Sci. 28, (1990) 1291-1301.

[7] A.C. Eringen, Microcontinuum Field Theories I: Foundations and
Solids,Springer-Verlag, New York, (1999).

[8] M. Ciarletta and A. Scalia, Some results in linear theory of thermomi-
crostretch elastic solids, Meccanica 39(2004) 191-206.

[9] D. Iesan and R. Quintanilla, Thermal stresses in microstretch elastic
plates, Int. J. Eng. Sci. 43, (2005) 885-907.

[10] M.I.A. Othman, K.H. Lotfy and R.M. Farouk, Generalized thermo-
microstretch elastic medium with temperature dependent properties for
different theories, Engineering Analysis with boundary elements 43 (2010)
229-237.

[11] F. Passarella and V. Tibullo, Some results in linear theory of thermoelas-
ticity backward in time for microstretch materials, J. Thermal Stresses 33
(2010) 559-576.

[12] M. Marin, Lagrange identity method in thermoelasticity of bodies with mi-
crostructure, International Journal of Engineering Science, vol. 32, issue
8, (1994), 1229-1240.

[13] M. Marin, Some estimates on vibrations in thermoelasticity of dipolar
bodies, Journal of Vibration and Control, vol.16 issue 1, (2010), 33 47.



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 167

[14] S. Kumar, J.N. Sharma and Y.D. Sharma, Generalized thermoelastic
waves in microstretch platesloaded with fluid of varying temperature, Int.
J. of Appl. Mechanics 3 (2011) 563-586.

[15] M.I.A. Othman and K.H. Lotfy, On the plane waves of generalized ther-
momicrostretch elastic half-space under three theories, Int. Commu. in
Heat and Mass Transfer 37 (2010) 192-200.

[16] M.I.A. Othman and K.H. Lotfy, Effect of rotation of plane waves in gen-
eralized thermomicrostretch elastic solids with one relaxation time, Multi.
Model. in Mat. and Str. 7 (2011) 43-62.

[17] R. Kumar and Rupender, Reflection at the free surface of magneto-
thermo-microstretch elastic solid, Bulletin of Polish Academy of Sciences
56 (2008) 263-271.

[18] R. Kumar and Rupender, Propagation of plane waves a imperfect bound-
ary of elastic and electro-microstretch generalized thermoelastic solids,
Appl. Math. and Mech. 30 (2012) 1445-1454.

[19] B. Singh, Reflection and refraction of plane waves at a liquid/thermo-
microstretch elastic solid interface, Int. J. of Engg. Sci. 39(2001) 583-598.

[20] R. Kumar and G. Pratap, Refection of plane waves in a heat flux depen-
dent microstretch thermoelastic solid half space, Int. J. App. Mech. and
Engg. 10(2005) 253-266.

[21] J.N. Sharma, S. Kumar, and Y.D. Sharma, Propagation of Rayleigh waves
in microstretch thermoelastic continua under inviscid fluid loadings, J.
Thermal Stresses, 31(2008) 18-39.

[22] R. Kumar and G. Pratap, Wave propagation in microstretch thermoe-
laastic plate bordered with layers of inviscid liquid, Multi. Model. in Mat.
Str., 5(2009) 171-184.

[23] W. Nowacki, Dynamical problems of thermodiffusion in solids-I, Bulletin
of Polish Academy of Sciences Series, Science and Technology 22(1974(a))
55-64.

[24] W. Nowacki, Dynamical problems of thermodiffusion in solids-II, Bulletin
of Polish Academy of Sciences Series, Science and Technology 22(1974(b))
129-135.

[25] W. Nowacki, Dynamical problems of thermodiffusion in solids-III, Bulletin
of Polish Academy of Sciences Series, Science and Technology 22(1974(c))
275-276.



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 168

[26] W. Nowacki, Dynamical problems of diffusion in solids, Engineering Frac-
ture Mechanics 8 (1976) 261-266.

[27] W. Dudziak and S.J. Kowalski, Theory of thermodiffusion for solids, Int.
J. of Heat and Mass transfer 32(1989) 2005-2013.

[28] Z.S. Olesiak and Y.A. Pyryev, A coupled quasi-stationary problem of ther-
modiffusion for an elastic cylinder, Int. J. of Engg. Sci. 33(1995) 773-780.

[29] J.A. Gawinecki and A. Szymaniec, Global solution of the Cauchy problem
in nonlinear thermoelastic diffusion in solid body, Proceedings in Appl.
Math. and Mech., 1(2002) 446-447.

[30] H.H. Sherief, F.A. Hamza, and H.A. Saleh, The theory of generalized
thermoelastic diffusion, International J. of Engg Sci., 42(2004) 591-608.

[31] M. Aouadi, Uniqueness and reciprocity theorems in the theory of general-
ized thermoelastic diffusion, J. Thermal Stresses, 30(2007) 665-678.

[32] H.H. Sherief, and H.A. Saleh, A half space problem in the theory of gen-
eralized thermoelastic diffusion, Int. J. of Solids and Structures, 42(2005)
4484-4493.

[33] Miglani, A. and Kaushal, S., Propagation of transverse and microrota-
tional waves in micropolar generalized thermodiffusion elastic half space,
ROMAI J., 7(2011) 125-139.

[34] R. Kumar and T. Kansal, Propagation of Lamb waves in transversely
isotropic thermoelastic diffusive plate, Int. J. of Solids and Str., 45(2008)
5890-5913.

[35] R. Kumar and T. Kansal, Fundamental solution in the theory
of thermomicrostretch elastic diffusive solids, International Schol-
arly Research Network, vol. 2011, Article ID 764632, 15 pages,
doi:10.5402/2011/764632.

[36] R. Kumar, S.K. Garg and S. Ahuja, Propagation of plane waves at the
interface of an elastic solid half-space and a microstretch thermoelastic
diffusion solid half-space, Latin Amer. J. of Solids and Str., 10(2013)
1081-1108.

[37] R. Kumar, S.K. Garg and S. Ahuja, Rayleigh waves in isotropic mi-
crostrech thermoelastic diffusion solid half-space, Latin Amer. J. of Solids
and Str., 111(2014) 299 - 319.



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 169

[38] H. Kolsky, Stress waves in solids, Clarendon Press, Oxford, Dover press
New York, 1963.

[39] J.D. Achenbach, Wave propagation in elastic solids, North-Holland, Am-
sterdam, 1973.

[40] R.D. Borcherdt, Reflection-refraction of general P and type-I S waves in
elastic and anelastic solids, Geophysical Journal of Royal Astronomical
Society, 70(1982) 621-638.

[41] A. C. Eringen, Plane waves in non local micropolar elasticity, Int. J. Eng.
Sci. 22(1984) 1113-1121.

[42] M. Marin, G. Stan, Weak solutions in Elasticity of dipolar bodies with
stretch, Carpathian Journal of Mathematics , Vol. 29 (1), 2013, pp. 33-40

[43] K. Sharma, M. Marin, Reflection and transmission of waves from im-
perfect boundary between two heat conducting micropolar thermoelastic
solids, An. Sti. Univ. Ovidius Constanta, Vol. 22, issue 2,(2014), 151-175

[44] M. Marin, O. Florea, On temporal behavior of solutions in Thermoelas-
ticity of porous micropolar bodies, An. Sti. Univ. Ovidius Constanta, Vol.
22, issue 1,(2014), 169-188

[45] X. Lin, B. Zhao and Z. Du, A third-order multi-point boundary value
problem at resonance with one three dimensional kernel space, Carpathian
Journal of Mathematics, Vol. 30 (2014), No. 1, 93-100

Rajneesh KUMAR Department of Mathematics,
Kurukshetra University,
Kurukshetra-136 119, India
E-mail: rajneesh kuk@rediffmail.com,



WAVE PROPAGATION IN A MICROSTRETCH THERMOELASTIC
DIFFUSION SOLID 170


