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Decomposition
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Abstract

Let J ⊂ I be two monomial ideals such that I/J is Cohen Macaulay.
By associating a finite posets P g

I/J to I/J , we show that if I/J is a Stan-

ley ideal then Ĩ/J is also a Stanley ideal, where Ĩ/J is the polarization
of I/J . We also give relations between sdepth and fdepth of I/J and

Ĩ/J .

Introduction

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n variables.
Let J ⊂ I ⊂ S be two monomial ideals such that I/J is a Zn-graded S-
module. Let u ∈ I/J be a homogeneous monomial and Z ⊆ {x1, . . . , xn}. We
denote by uK[Z] the K-subspace of I/J generated by all elements uv where
v is a monomial in K[Z]. If uK[Z] is a free K[Z]-module then the Zn-graded
K-subspace uK[Z] ⊂ I/J is called a Stanley space of dimension |Z|.

A Stanley decomposition of I/J is a presentation of the Zn-graded K-vector
space I/J as a finite direct sum of Stanley spaces D : I/J =

⊕m
i=1 uiK[Zi].

The Stanley depth of I/J is defined to be

sdepth(I/J) = max{sdepthD : D is a Stanley decomposition of I/J}.

Stanley [10] conjectured that there always exists a Stanley decomposition such
that sdepth( I/J) ≥ depth(I/J). If the conjecture holds for some ideal I, then
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we call I a Stanley ideal. The conjecture is widely discussed in recent years
for example [2], [4], [6], [8], [9].

Let u be a monomial in S. Then

ũ =

n∏
i=1

ai∏
j=1

xij ∈ T

is called the polarization of u, where T = K[x11, . . . , x1a1 , . . . , xn1, . . . , xnan ].
Let I be a monomial ideal in S with monomial generators (u1, . . . , ur). Then
the ideal generated by (ũ1, . . . , ũr) is called the polarization of I and is denoted
by Ĩ. For more details, see [3]. As a main result of this paper we show that

if I/J is a CM Stanley ideal, then Ĩ/J is also a CM Stanley ideal by using a
more appropriate approach than [1]. We use the idea of characteristic poset
from [6]. A partial order on Nn is given by (a(1), . . . , a(n)) ≤ (b(1), . . . , b(n))
if a(i) ≤ b(i) for all i. Let g ∈ Nn be an integer vector with the property
that a ≤ g for all a ∈ Zn with xa ∈ I/J . Here xa denote the monomial

x
a(1)
1 . . . x

a(n)
n where a = (a(1), . . . , a(n)) ∈ Nn. The characteristic poset (see

[6]) P gI/J of I/J with respect to g is the subposet of Nn given by

P gI/J = {a ∈ Zn : xa ∈ I \ J, a ≤ g}.

Each Stanley decomposition of I/J gives a partition of P gI/J and vice versa.

We call a partition of P gI/J , a nice partition if its corresponding Stanley decom-

position satisfies Stanley’s conjecture. In Proposition 1.2, we give a necessary
and sufficient condition for a partition to be nice. In Theorem 1.5, we show
that if PI/J has a nice partition, then P

Ĩ/J
also has a nice partition.

In [6], the concept of fdepth is introduced which is a natural lower bound
for sdepth and depth. It is defined as

fdepthM = max{fdepthF : F is a prime filtration of M}.

In Corollary 1.6, we show that sdepth (fdepth) of Ĩ/J can be computed by
computing sdepth (fdepth) of I/J .

1 Posets and their Partitions

The natural partial order ≤ on Nn is defined as follows: a ≤ b, with a =
(a(1), . . . , a(n)) and b = (b(1), . . . , b(n)) if and only if a(i) ≤ b(i) all for i =
1, . . . , n. The meet a ∧ b and join a ∨ b with respect to ≤ are
(min{a(1), b(1)}, . . . ,min{a(n), b(n)}) and (max{a(1), b(1)}, . . . ,max{a(n), b(n)}),
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respectively.
With this natural partial order Nn is a distributive lattice.

Let K be a field and S = K[x1, . . . , xn] be the polynomial ring in n vari-
ables. For any c = (c(1), . . . , c(n)) ∈ Nn we denote by xc the monomial

x
c(1)
1 · · ·xc(n)n . Let I and J be two monomial ideals in S such that J ⊂ I. Let
I = (xa1 , . . . , xar ) and J = (xb1 , . . . , xbs) for some ai, bi ∈ Nn for all i. We
associate a poset to I/J in the following way: we choose g ∈ Nn such that
ai ≤ g and bj ≤ g for all i and j. Let P gI/J be the set of all c ∈ Nn with c ≤ g
and such that ai ≤ c for some i and c 6≥ bj for all j. The set P gI/J is a finite

subposet in Nn and called (see [6]) the characteristic poset of I/J with respect
to g. A natural choice for g is the join of all the ai and bj . For this choice of
g, the poset P gI/J has the least number of elements.

Given any poset P and a, b ∈ P , an interval [a, b] is defined as [a, b] = {c ∈
P : a ≤ c ≤ b}. Suppose P is a finite poset. A partition of P is a disjoint
union

P : P =

r⋃
i=1

[ai, bi]

of intervals of P .
In order to describe the Stanley decomposition of I/J coming from a par-

tition of P gI/J we adopt the following notation from [6]: for each b ∈ P gI/J , Zb
is the set {xj : b(j) = g(j)}. The function ρ is introduced as

ρ : P gI/J → Z≥0, c 7→ ρ(c),

where ρ(c) = |{j : c(j) = g(j)}|(= |Zc|). Now we quote the following theorem
from [6].

Theorem 1.1. Let P : P gI/J =
⋃r
i=1[ci, di] be a partition of P gI/J . Then

D(P) : I/J =

r⊕
i=1

(
⊕
c

xcK[Zdi ]) (1)

is a Stanley decomposition of I/J , where the inner direct sum is taken over
all c ∈ [ci, di] for which c(j) = ci(j) for all j with xj ∈ Zdi . Moreover,
sdepthD(P) = min{ρ(di) : i = 1, . . . , r}.

It is also shown in [6, Theorem 2.4] that sdepth I/J can be computed as the
maximum of the numbers sdepthD(P), where P runs over the (finitely many)
partitions of P gI/J . From these results we conclude that Stanley’s conjecture

holds for I/J if and only if there exists a partition P : P gI/J =
t⋃
i=1

[ai, bi] of the
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poset P such that

|ρ(bi)| ≥ depth(I/J) for all i. (2)

Any partition of a poset satisfying condition (1.2) will be called nice.
To this end, we give some definitions associated to a poset. Let P be a

finite poset. An element m ∈ P is called a maximal element if there is no
a ∈ P with a > m. We denote by M(P ) the set of maximal elements of P .
An element a ∈ P is called a facet of P if for all m ∈ M(P ) with a ≤ m one
has ρ(a) = ρ(m). The set of all facets of P will be denoted by F(P ).

A chain F : 0 = M0 ⊂ M1 ⊂ · · · ⊂ Mm = M of Zn-graded submodules
of M is called a prime filtration of M if Mi/Mi−1 ∼= (S/Pi)(−ai) where ai ∈
Zn and where each Pi is a monomial prime ideal. The set of prime ideals
{P1, . . . , Pm} is called the support of F and denoted by suppF.

The next proposition gives a necessary and sufficient condition for a par-
tition P of P gI/J to be nice.

Proposition 1.2. Let J ⊂ I be two monomial ideals of S such that I/J is
Cohen-Macaulay. Let P gI/J be the poset associated to I/J and P : P gI/J =⋃t
i=1[ai, bi] be a partition of P gI/J . Then the following conditions are equiva-

lent.

(a) P is nice.

(b) {b1, . . . , bt} ⊆ F(P gI/J)

(c) M(P gI/J) ⊆ {b1, . . . , bt} ⊆ F(P gI/J)

Proof. (a)⇒ (b): Since I/J is Cohen-Macaulay therefore |ρ(b)| ≤ depth(I/J)
for all faces of P gI/J , and |ρ(b)| = depth(I/J) if and only if b is a facet. Thus

P is nice only if {b1, . . . , bt} ⊆ F(P gI/J).

(b)⇒ (c): Let m ∈M(P gI/J) and since P is partition of P gI/J , so m ∈ [ai, bi]

for some i. Since m ≤ bi and m is maximal, it follows that m = bi. Thus
M(P gI/J) ⊆ {b1, . . . , bt}.

(c) ⇒ (a): Let F be a prime filtration of I/J . Then {dimS/P : P ∈
Ass(I/J))} = {ρ(bi) : bi ∈ F(P gI/J)}. Therefore,

min{ρ(bi) : bi ∈ F(P gI/J)} = min{ρ(mj) : mj ∈M(P gI/J)}
= min{dim(S/Pj) : Pj ∈ Ass(I/J)}
≥ depth(I/J).

The first equation follows from the definition of the facets, while the last
inequality is a basic fact of commutative algebra. Therefore our given partition
is nice.
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Remark 1.3. In the above Proposition if P is nice then we can refine it in
such a way that for the refinement

P′ : P gI/J =

t′⋃
i=1

[a′i, b
′
i]

we have {b′1, . . . , b′t′} = F(P gI/J). To prove this fact, let b̂ be a facet such that

b̂ 6= b′i, for all i. So there exist some interval [ai, bi] with b̂ ∈ [ai, bi]. Since b̂ is

a facet, we obtain ρ(b̂) = ρ(bi), and there exist j such that b̂(j) < bi(j). We

set a′i(j) = b̂(j) + 1 and a′i(k) = ai(k) for all k different from j. The interval

[ai, bi] in P can be replaced by two disjoint intervals, namely [ai, b̂] and [a′i, bi]
and obtain the desired conclusion.

Let u be a monomial in S. Then ũ =
∏n
i=1

∏ai
j=1 xij ∈ T is called the

polarization of u, where T = K[x11, . . . , x1a1 , . . . , xn1, . . . , xnan ]. Let I ⊂ S
be a monomial ideal such that I = (u1, . . . , ur). Then the ideal generated by
(ũ1, . . . , ũr) is called a polarization of I and is denoted by Ĩ. We may assume
that for each i ∈ [n] there exists j such that xi divides uj . Let uj = x

aj1
1 · · ·xajnn

for j = 1, . . . , s and set ri = max aji : j = 1, . . . , s for i = 1, . . . , n. Moreover

we set r =
∑n
i=1 ri. Then Ĩ is a squarefree monomial ideal in the polynomial

ring T in r variables. It is known that I is Cohen-Macaulay if and only if Ĩ is
Cohen-Macaulay.

We denote the posets associated with I/J and Ĩ/J by P gI/J and P g
′

Ĩ/J
, and

the set of facets of P gI/J and P g
′

Ĩ/J
by F(P gI/J) and F(P g

′

Ĩ/J
). Note that F(P gI/J)

is a subset of the set

B = {b ∈ Nn : b(i) < ri if b(i) 6= g(i)}.

In order to formulate the main theorem of this paper, we introduce the
following notion. We define the map ϕ : B → Nr as follows:

b 7→ b′(ij) =

{
0, if b(i) < g(i) and j = b(i) + 1,
g′(ij), otherwise.

The components of the vectors b′ are indexed by pairs of numbers ij and for
each i = 1, . . . , n the second index j runs in the range j = 1, . . . , ri.

The set of facets of a poset can be viewed as the set of facets of a multi-
complex Γ in the following way: if a is a facet of Γ with a(i) = ∞, then we
set a(i) = g(i). For details about multicomplex, see [5]. From the result of
Soleyman Jahan [7, Proposition 3.8], we see that the restriction of the map ϕ
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to F(P gI/J) is a bijection between the set of facets of P gI/J and the set of facets

of P g
′

Ĩ/J
.

Consider the set A = {a ∈ Nn : a(i) ≤ ri} and the map ψ : A → {0, 1}r
defined as

ψ(a)(ij) =

{
0, if j > a(i),
1, otherwise.

The map ψ is injective, because if for any a 6= a′ there exists some i such that
a(i) 6= a′(i), say a(i) < a′(i). Then by definition of ψ, a(ij) = 0 for j = a(i)+1
and a′(ij) = 1 for j = a(i) + 1.

Let I = [a, b] ⊂ Nn be an interval such that a = (a(1), a(2), . . . , a(n)) and
b = (b(1), b(2), . . . , b(n)). An i-subinterval of I is defined as {c ∈ N : a(i) ≤
c ≤ b(i)} and is denoted it by I(i) = [a(i), b(i)]. Next we quote the following
Lemma from [1].

Lemma 1.4. Let I1, I2 be two intervals of a poset P such that I1 = [a, b] and
I2 = [c, d]. Suppose I1 ∩ I2 = ∅, then I1(i)∩ I2(i) = ∅, for some i ∈ {1, . . . , n}

Now we state the following theorem.

Theorem 1.5. Let I ⊂ J ⊂ S be two monomial ideals of S such that I/J is

Cohen-Macaulay and Ĩ/J be the polarization of I/J . Also let P gI/J and P g
′

Ĩ/J

be the characteristic posets associated to I/J and Ĩ/J , respectively. If P gI/J

has a nice partition then P g
′

Ĩ/J
has also a nice partition.

Proof. Let P gI/J has a nice partition say P′. As described in Remark 1.3 we

can refine the partition P′ to a refined partition say P :=
⋃t
i=1[ci, di] such that

{d1, . . . , dt} = F(P ). We will show that P̂ :=
⋃t
i=1[ĉi, d̂i] is a nice partition of

P g
′

Ĩ/J
, where ψ(ci) = ĉi and ϕ(di) = d̂i for all i = 1, . . . , t.

First, we show that [ĉi, d̂i] ∩ [ĉj , d̂j ] = ∅, for all i 6= j. Suppose that

there exist a face c ∈ [ĉi, d̂i] ∩ [ĉj , d̂j ] 6= ∅ for some i 6= j. Injectivity of ψ
gives ĉi 6= ĉj . Since [ci, di] ∩ [cj , dj ] = ∅, we apply Lemma 1.4 and obtain
[ci(l), di(l)] ∩ [cj(l), dj(l)] = ∅ for some l ∈ {1, . . . , n}. It shows that at least
one of di(l), dj(l) is not equal to g(l) say di(l) 6= g(l). Then by Theorem 1.1
bi(l) = ai(l). If dj(l) = g(l) and ci(l) > cj(l) then [ci(l), di(l)] ⊂ [cj(l), dj(l)]
which is not possible so we may assume that ci(l) < cj(l). On the other
hand if dj(l) 6= g(l), then we may change i by j. Thus we can assume let
ci(l) = di(l) = k−1 and cj(l) = m > k−1. Then by definition of P gI/J and ϕ we

have ĉi(lk) = 0 = d̂i(lk) and ĉj(ll) = 1 for l ≤ m. Thus ĉj(lk) = 1. It follows
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that c(lk) = 0. On the other hand, since c ≥ ĉj , we get c(lk) ≥ ĉj(lk) = 1 and

we obtain a contradiction to our assumption that [ĉi, d̂i] ∩ [ĉj , d̂j ] 6= ∅.
Now for the second part of the proof, we will use the Hilbert series. We have

H(S/I) =
∑t
i=1 s

|ci|/(1−s)ρ(di). The definition of ψ implies that ρ(ci) = ρ(ĉi)
for all i = {1, . . . , t}. We know that the depth of I/J increases by 1 for each
polarization step. Also, we observe from the definition of ϕ that for each
polarization step, ρ(di) increases by 1. Therefore, after p polarization steps

ρ(d̂i) = ρ(di) + p and

H(

t⋃
i=1

[ĉi, d̂i]) =

t∑
i=1

sρ(ci)

(1− s)ρ(di)+p
=

1

(1− s)p
H(S/I)

is the Hilbert series of H(Ĩ/J). Hence Ĩ/J =
⋃t
i=1[ĉi, d̂i]. Note that⋃t

i=1[ĉi, d̂i] is a nice partition because ρ(d̂i) = ρ(di) + p ≥ depthS(S/I) + p =

depthT (Ĩ/J), for all i.

The converse of Theorem 1.5 is still open. We recall the definition of
fdepth from [6]. Let F be a prime filtration of I/J . Furthermore, fdepthF =
min{dimS/P : P ∈ suppF} and

fdepthM = max{fdepthF : F is a prime filtration of M}.

It is not obvious how to compute the fdepth of a module, but it is very easy
to see that fdepthM ≤ depthM, sdepthM .

Corollary 1.6. With same notation as above, we have

(a) sdepth(Ĩ/J) = sdepth(I/J) + r − n,

(b) fdepth(Ĩ/J) ≥ fdepth(I/J).

Where r and n are the number of variables of T and S, respectively.

Proof. Let c ∈ F(P gI/J) and ϕ(c) ∈ F(P g
′

Ĩ/J
). Since sdepth(fdepth) of a Stanley

decomposition of I/J is minimum of the numbers ρ(c), the assertion follows
by observing that ρ(ϕ(c)) = ρ(c) + r − n.
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