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Abstract

Let J C I be two monomial ideals such that I/J is Cohen Macaulay.
By associating a finite posets PIg/J to I/J, we show that if I/J is a Stan-
ley ideal then m is also a Stanley ideal, where I,Z] is the polarization
of I/J. We also give relations between sdepth and fdepth of I/J and
1/J.

Introduction

Let K be a field and S = K[z1, ..., 2,] be the polynomial ring in n variables.
Let J € I C S be two monomial ideals such that I/J is a Z"-graded S-
module. Let u € I/J be a homogeneous monomial and Z C {x1,...,z,}. We
denote by uK[Z] the K-subspace of I/J generated by all elements uv where
v is a monomial in K[Z]. If uK[Z] is a free K[Z]-module then the Z"-graded
K-subspace uK|[Z] C I/J is called a Stanley space of dimension |Z|.

A Stanley decomposition of I/J is a presentation of the Z™-graded K-vector
space I/J as a finite direct sum of Stanley spaces D : I/J = @.", u;K[Z;].
The Stanley depth of I/.J is defined to be

sdepth(I/J) = max{sdepthD: D is a Stanley decomposition of I/J}.

Stanley [10] conjectured that there always exists a Stanley decomposition such
that sdepth( I/J) > depth(I/J). If the conjecture holds for some ideal I, then
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we call I a Stanley ideal. The conjecture is widely discussed in recent years
for example [2], [4], [6], [8], [9].
Let u be a monomial in S. Then

is called the polarization of u, where T = K[Z11,...,Z1a1s---sTnly---sTna, |-
Let I be a monomial ideal in S with monomial generators (uq, ..., u,). Then
the ideal generated by (41, ..., 4, ) is called the polarization of I and is denoted
by I. For more details, see [3]. As a main result of this paper we show that
if I/J is a CM Stanley ideal, then I/J is also a CM Stanley ideal by using a
more appropriate approach than [1]. We use the idea of characteristic poset
from [6]. A partial order on N™ is given by (a(1),...,a(n)) < (b(1),...,b(n))
if a(i) < b(i) for all 5. Let g € N™ be an integer vector with the property
that @ < g for all a« € Z™ with z* € I/J. Here z* denote the monomial
r(ll(l) .72 where a = (a(1),...,a(n)) € N™. The characteristic poset (see
[6]) ij/J of I/J with respect to g is the subposet of N™ given by

Pl y={a€Z" 2" €I\J, a<g}

Each Stanley decomposition of I/J gives a partition of P/ 7 and vice versa.
We call a partition of PIQ 2 nice partition if its corresponding Stanley decom-
position satisfies Stanley’s conjecture. In Proposition 1.2, we give a necessary
and sufficient condition for a partition to be nice. In Theorem 1.5, we show
that if Pr/; has a nice partition, then Pm also has a nice partition.

In [6], the concept of fdepth is introduced which is a natural lower bound
for sdepth and depth. It is defined as

fdepth M = max{fdepthF: F is a prime filtration of M}.

In Corollary 1.6, we show that sdepth (fdepth) of m can be computed by
computing sdepth (fdepth) of I/J.

1 Posets and their Partitions

The natural partial order < on N" is defined as follows: a < b, with a =
(a(1),...,a(n)) and b = (b(1),...,b(n)) if and only if a(i) < b(3) all for i =
1,...,n. The meet a A b and join a V b with respect to < are
(min{a(1),b(1)},...,min{a(n),b(n)}) and (max{a(1),b(1)}, ..., max{a(n),b(n)}),
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respectively.
With this natural partial order N™ is a distributive lattice.
Let K be a field and S = Klz1,...,2,] be the polynomial ring in n vari-

ables. For any ¢ = (c¢(1),...,¢(n)) € N® we denote by z° the monomial
xi(l) cee xfl(n). Let I and J be two monomial ideals in S such that J C I. Let
I=(x%,...,2%) and J = (2™,...,2%) for some a;,b; € N" for all i. We

associate a poset to I/J in the following way: we choose g € N™ such that
a; < gand b; <gforalliandj. Let P;’/J be the set of all c € N® with ¢ < g

and such that a; < ¢ for some ¢ and ¢ 22 b; for all j. The set Pf/J is a finite

subposet in N™ and called (see [6]) the characteristic poset of I/J with respect
to g. A natural choice for g is the join of all the a; and b;. For this choice of
g, the poset ij/J has the least number of elements.

Given any poset P and a,b € P, an interval [a,b] is defined as [a,b] = {c €
P: a < ¢ < b}. Suppose P is a finite poset. A partition of P is a disjoint

union
.

P. P= U[a“bz]
i=1
of intervals of P.
In order to describe the Stanley decomposition of I/J coming from a par-
tition of Pf/J we adopt the following notation from [6]: for each b € PIg/J7 Zy
is the set {z;: b(j) = g(j)}. The function p is introduced as

P P[g/‘]_>Z207 CHP(C)a

where p(c) = [{j: ¢(5) = 9(j)} (= |Z.]). Now we quote the following theorem
from [6].

Theorem 1.1. Let P: PIg/J = U;_1lci, di] be a partition of Py

L Then

D(P): I/J=_EB(@$CK[Z@]) (1)

is a Stanley decomposition of I/J, where the inner direct sum is taken over
all ¢ € [c;,d;] for which c(j) = ¢ (j) for all j with x; € Zg,. Moreover,
sdepth D(P) = min{p(d;): i =1,...,r}.

It is also shown in [6, Theorem 2.4] that sdepth I'/J can be computed as the
maximum of the numbers sdepth D(P), where P runs over the (finitely many)
partitions of PIg L From these results we conclude that Stanley’s conjecture

t
holds for I/J if and only if there exists a partition P : PIg/J = U [as, b;] of the
=1

1=
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poset P such that
|p(b;)| > depth(I/J) for all . (2)

Any partition of a poset satisfying condition (1.2) will be called nice.

To this end, we give some definitions associated to a poset. Let P be a
finite poset. An element m € P is called a maximal element if there is no
a € P with a > m. We denote by M(P) the set of maximal elements of P.
An element a € P is called a facet of P if for all m € M(P) with a < m one
has p(a) = p(m). The set of all facets of P will be denoted by F(P).

Achain§:0=MyC M, C --- C M,, = M of Z"™-graded submodules
of M is called a prime filtration of M if M;/M;_1 = (S/P;)(—a;) where a; €
Z™ and where each P; is a monomial prime ideal. The set of prime ideals
{P1,..., Py} is called the support of § and denoted by supp §.

The next proposition gives a necessary and sufficient condition for a par-

tition P of Pf/J to be nice.

Proposition 1.2. Let J C I be two monomial ideals of S such that I/J is
Cohen-Macaulay. Let PIg/J be the poset associated to I/J and P : Pf/J =

Ule[ai,bi] be a partition of ij/J. Then the following conditions are equiva-

lent.
(a) P is nice.
(b) {b1,...,0:} C iT(PIg/J)

(c) M(PY,,) C {ba,..., b} CT(PY,))

Proof. (a) = (b): Since I/J is Cohen-Macaulay therefore |p(b)| < depth(I/J)
for all faces of PIg/J7 and |p(b)| = depth(I/J) if and only if b is a facet. Thus
P is nice only if {by,...,b:} C ?(PIQ/J).

(b) = (c): Let m € M(Pf/J) and since P is partition of Pf/J, som € [a;, b
for some 4. Since m < b; and m is maximal, it follows that m = b;. Thus
M(PY),) € {br-.. . bi}.

(¢c) = (a): Let § be a prime filtration of I/J. Then {dimS/P : P €
Ass(I/J))} = {p(b;) : b; € ?(PIQ/J)}. Therefore,

min{p(b;): b; € ?(PIQ/J)} = min{p(m;): m; € M(Pjg/J)}
= min{dim(S/P;): P; € Ass(I/J)}
> depth(I/J).
The first equation follows from the definition of the facets, while the last

inequality is a basic fact of commutative algebra. Therefore our given partition
is nice. O



ON CHARACTERISTIC POSET AND STANLEY DECOMPOSITION 25

Remark 1.3. In the above Proposition if P is nice then we can refine it in
such a way that for the refinement

¢

o Py, = | Jlal, b

i=1

we have {b],...,b},} = S"(PIQ/J). To prove this fact, let b be a facet such that
b # b, for all i. So there exist some interval [a;, b;] with b € [a;, b;]. Since b is
a facet, we obtain p(b) = p(b;), and there exist j such that b(j) < b;(j). We
set al(j) = b(j) + 1 and a/(k) = a;(k) for all k different from j. The interval
[a;,b;] in P can be replaced by two disjoint intervals, namely [a;, 13] and [a}, b;]
and obtain the desired conclusion.

Let u be a monomial in S. Then @ = [[}_, [[j2, zi; € T is called the
polarization of u, where T = K[211,...,Z1a;,--s&nlys---,%na, ). Let T C S
be a monomial ideal such that I = (uq,...,u,). Then the ideal generated by
(@i1,..., 1) is called a polarization of I and is denoted by I. We may assume
that for each i € [n] there exists j such that x; divides u;. Let u; = 277" -+ - a’"
for j =1,...,s and set 7; = maxa;;: j=1,...,s fori=1,...,n. Moreover
we set 7 =Y., ;. Then I is a squarefree monomial ideal in the polynomial
ring T in r variables. It is known that I is Cohen-Macaulay if and only if I is
Cohen-Macaulay.

We denote the posets associated with I/J and ﬁj] by P 7 and PIE;VJ , and
the set of facets of P, ; and PIg/T] by F(P{, ;) and ?(PIQ/AJJ). Note that F(P7, ;)

is a subset of the set
B={beN":b(i) <r;if b(s) # g(i)}.

In order to formulate the main theorem of this paper, we introduce the
following notion. We define the map ¢ : B — N" as follows:

Ve 0, if b(4) < g(¢) and j = b(i) + 1,
b b(ij) = { g'(ij), otherwise.
The components of the vectors b’ are indexed by pairs of numbers ij and for
each ¢ = 1,...,n the second index j runs in the range j =1,...,r;.

The set of facets of a poset can be viewed as the set of facets of a multi-
complex T' in the following way: if a is a facet of I" with a(i) = oo, then we
set a(i) = g(i). For details about multicomplex, see [5]. From the result of
Soleyman Jahan [7, Proposition 3.8], we see that the restriction of the map ¢
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to S"(PIQ/J) is a bijection between the set of facets of PIg/J and the set of facets
of PY_.
1/J
Consider the set A = {a € N" : a(i) < r;} and the map v : A — {0,1}"
defined as 0
[0, ifj>a(i),
W(a)(ij) _{ 1, otherwise.

The map ) is injective, because if for any a # a’ there exists some 4 such that
a(i) # a'(i), say a(i) < a’(i). Then by definition of ¢, a(ij) = 0 for j = a(i)+1
and a'(ij) =1 for j = a(i) + 1.

Let I = [a,b] C N™ be an interval such that a = (a(1),a(2),...,a(n)) and
b= (b(1),b(2),...,b(n)). An i-subinterval of I is defined as {¢ € N : a(i) <
¢ < b(i)} and is denoted it by I(i) = [a(i), b(7)]. Next we quote the following
Lemma from [1].

Lemma 1.4. Let I, 5 be two intervals of a poset P such that I = [a,b] and
Iy = [c,d]. Suppose Iy NIy =0, then I1(i) N I2(i) = 0, for some i € {1,...,n}

Now we state the following theorem.

Theorem 1.5. Let I C J C S be two monomial ideals of S such that I/.J is

Cohen-Macaulay and If/\j] be the polarization of I/J. Also let PIg/J and PIQ//VJ

be the characteristic posets associated to I/J and jf/vJ, respectively. If PIg/J
g/

has a nice partition then PI/J has also a nice partition.

Proof. Let ij 1 has a nice partition say P?’. As described in Remark 1.3 we

can refine the partition P’ to a refined partition say P := |J!_, [ei, d;] such that
{dy,...,d} = F(P). We will show that P := U§=1[éia d;] is a nice partition of

Pjg-//v], where ¥(¢;) = & and ¢(d;) = d; for all i = 1,... ¢

First, we show that [éi,cii] N [éj,dj] = (, for all ¢ # j. Suppose that
there exist a face ¢ € [éz,czz] N [éj,cij] # () for some i # j. Injectivity of 3
gives ¢; # ¢;. Since [¢;,d;] N [¢j,d;] = 0, we apply Lemma 1.4 and obtain
lci(1),d; ()] N (e (1),d;(1)] = O for some [ € {1,...,n}. It shows that at least
one of d;(1),d;(l) is not equal to g(l) say d;(1) # g(I). Then by Theorem 1.1
bi(l) = a;(1). If d;(1) = g(1) and ¢;(1) > ¢;(1) then [¢;(1),d;(1)] C [e;(1),d;(1)]
which is not possible so we may assume that ¢;(I) < ¢;(I). On the other
hand if d;(I) # g¢(I), then we may change ¢ by j. Thus we can assume let
¢i(l) = di(l) = k—1and ¢;(I) = m > k—1. Then by definition of PIQ/J and ¢ we

have ¢ (lk) = 0 = d;(lk) and ¢;(ll) =1 for I < m. Thus ¢;(lk) = 1. It follows
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that ¢(lk) = 0. On the other hand, since ¢ > ¢;, we get c(lk) > ¢;(lk) = 1 and
we obtain a contradiction to our assumption that [&,d;] N [¢;, d;] # 0.

Now for the second part of the proof, we will use the Hilbert series. We have
H(S/I) =Y'_, sl¢l/(1—5)P(%). The definition of ¢ implies that p(c;) = p(&;)
for all i = {1,...,t}. We know that the depth of I/J increases by 1 for each
polarization step. Also, we observe from the definition of ¢ that for each
polarization step, p(d;) increases by 1. Therefore, after p polarization steps

p(di) = p(di) + p and

t o t gp(ei) )
H(L_Jl[ci, ) =2 Gy = gt/

i=1

is the Hilbert series of H(jf/vj) Hence m = U:zl[él,ﬁl] Note that
Ule[éi, d;] is a nice partition because p(d;) = p(d;) +p > depthg(S/I) +p =

depthp(I/J), for all i. O

The converse of Theorem 1.5 is still open. We recall the definition of
fdepth from [6]. Let § be a prime filtration of I/J. Furthermore, fdepth§ =
min{dim S/P: P € supp§} and

fdepth M = max{fdepth§: F is a prime filtration of M}.

It is not obvious how to compute the fdepth of a module, but it is very easy
to see that fdepth M < depth M, sdepth M.

Corollary 1.6. With same notation as above, we have
(a) sdepth(m) = sdepth(I/J) +r —n,
(b) fdepth(I/J) > fdepth(I/.J).
Where r and n are the number of variables of T and S, respectively.

Proof. Let c € ?(ij/J) and ¢(c) € ?(PI%'}). Since sdepth(fdepth) of a Stanley

decomposition of I/J is minimum of the numbers p(c), the assertion follows
by observing that p(¢(c)) = p(c) +r — n. 0
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