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A duality-type method for the obstacle problem

D. R. Merluşcă ∗

Abstract

Based on a duality property, we solve the obstacle problem on
Sobolev spaces of higher order. We have considered a new type of
approximate problem and with the help of the duality we reduce it
to a quadratic optimization problem, which can be solved much easier.

1 Introduction

The study of the obstacle problem has a long history. One of the first authors
who treated the obstacle problem is G. Fichera, [8, 9]. Later on, J. Frehse,
[10], proved that the second derivatives of the solution are bounded by using
the minimum principle of superharmonic functions. In the work of D.G. Scha-
effer, [18], 1975, the obstacle problem is solved using the Nash-Moser implicit
function theorem.

We also quote the monographs of D. Kinderlehrer and G. Stampacchia,
[14], R. Glowinski, [12] and V. Barbu, T. Precupanu, [4], devoted or including
consistent investigations on unilateral problems.

The high interest in the obstacle problem is due to its multiple applications
such as the study of fluid filtration in porous media, constrained heating,
elasto-plasticity, optimal control, and financial mathematics (C. Baiocchi.[3],
G. Duvaut, J.-L. Lions [7] and P. Wilmott, S. Howison, J. Dewynne, [19]).
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Some recent articles in this subject are R. Griesse, K. Kunisch, [11], C. M.
Murea, D. Tiba [16], M. Burger, N. Matevosyan, M.T Wolfram, [6].

The obstacle problem is often referred to in papers that develop new al-
gorithms as an important example for testing them. For instance, L. Badea,
[2], one- and two-level domain decomposition methods are tested on a two ob-
stacles problem, in higher order Sobolev spaces. And speaking of algorithms,
many authors are still developing special tools to solve the obstacle problem
(F. A. Pérez, J. M. Cascón, L. Ferragut, [17]).

In this paper, we are discussing the obstacle problem defined on the Sobolev
space W 1,p

0 (Ω), for p > dim Ω. The idea we use is that of solving the prob-
lem with the help of an approximate problem of its dual, which we state in
Section 2 and that seems to be new. We apply the Fenchel’s duality theo-
rem, in Section 3 and we analyze the dual problem that appears from the
application of the duality theorem. Using another duality argument, K. Ito,
K. Kunisch, [13], introduced the primal-dual active set strategies and they
proved that the method based on this strategy is equivalent to a semi-smooth
Newton method. In this paper we show that the solution of the approximate
dual problem is a linear combination of Dirac distributions. Finally, we are
able to treat the approximate obstacle problem by simply solving a quadratic
minimization problem and applying a formula which transfers the result back
to the primal approximate problem. In Section 4 we apply the algorithm to
the one dimensional obstacle problem. The results of this paper have been
announced in the note [15] (without proofs).

2 The problem and its approximation

We consider that Ω ⊂ Rd is a bounded open set with the strong local Lipschitz
property. We study the obstacle problem

min
y∈W 1,p

0 (Ω)+

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy

}
(1)

where f ∈ L1(Ω), p > d = dim Ω, and W 1,p
0 (Ω)+ = {y ∈ W 1,p

0 (Ω) : y ≥
0 in Ω}.

By the Sobolev theorem, we have W 1,p(Ω)→ C(Ω) and it makes sense to
consider the following approximate problem

min

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy : y ∈W 1,p
0 (Ω); y(xi) ≥ 0, i = 1, 2, . . . , k

}
(2)

where {xi}i∈N ⊆ Ω is a dense set in Ω. For each k ∈ N, we denote

Ck = {y ∈W 1,p
0 (Ω) : y(xi) ≥ 0, i = 1, 2, . . . , k}
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the closed convex cone.
We have

Proposition 1. The following assertions are true

(i) Problem (1) has a unique solution ȳ ∈W 1,p
0 (Ω)+.

(ii) Problem (2) has a unique solution ȳk ∈ Ck.

This is an easy consequence of the compact imbedding W 1,p(Ω)→ L∞(Ω),
which follows from the Rellich-Kondrachov Theorem (R. Adams [1], Theorem
6.2, Part II, page 144).

Moreover, we can prove the following approximation result

Theorem 1. The sequence {ȳk}k of the solutions of problems (2), for k ∈ N,
is a strongly convergent sequence in W 1,p(Ω) to the unique solution ȳ of the
problem (1).

Proof. Let {ȳk}k∈N ⊆W 1,p
0 (Ω) be the sequence of the solutions of the problems

(2). Consider y ∈ W 1,p
0 (Ω)+ arbitrary. Then y ∈ Ck, for every k ∈ N. It

follows that

1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy ≥ 1

2
‖ȳk‖2W 1,p

0 (Ω)
−
∫

Ω

fȳk, ∀y ∈W 1,p
0 (Ω)+,∀k ∈ N. (3)

Then

inf
y∈W 1,p

0 (Ω)+

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy

}
≥ 1

2
‖ȳk‖2W 1,p

0 (Ω)
−
∫

Ω

fȳk, ∀k ∈ N.

Knowing that inf(P ) = M < +∞, with M > 0 constant, it yields

M ≥ 1

2
‖yk‖2W 1,p

0 (Ω)
−
∫

Ω

fyk

≥ 1

2
‖ȳk‖2W 1,p

0 (Ω)
− c‖f‖L1(Ω)‖ȳk‖W 1,p

0 (Ω).

So the sequence
{
‖ȳk‖W 1,p

0 (Ω)

}
k

is bounded. Thus the sequence {ȳk}k ∈

W 1,p
0 (Ω) is weakly convergent to an element ŷ ∈W 1,p

0 (Ω), on a subsequence.
Since ȳk(xi) ≥ 0 and ȳk → ŷ uniformly on Ω, then for every x ∈ Ω we have

ȳk(x) → ŷ(x). Then ŷ(xi) ≥ 0, ∀i ∈ N. Considering that the set {xi : i ∈ N}
is assumed to be dense in Ω, it results that ŷ ∈W 1,p

0 (Ω)+. In conclusion, ŷ is
admissible for (1).
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On the other hand, since ȳ ∈ W 1,p
0 (Ω)+, we can write (3) for ȳ, which

means that

1

2
‖ȳ‖2

W 1,p
0 (Ω)

−
∫

Ω

fȳ ≥ 1

2
‖ȳk‖2W 1,p

0 (Ω)
−
∫

Ω

fyk. (4)

Passing to the limit, and considering the weak inferior semicontinuity of the
norm, we obtain

1

2
‖ȳ‖2

W 1,p
0 (Ω)

−
∫

Ω

fȳ ≥ 1

2
‖ŷ‖2

W 1,p
0 (Ω)

−
∫

Ω

fŷ.

But, since problem (1) has a unique solution, it follows that ȳ = ŷ. So, we
have proved that ȳk → ȳ weakly in W 1,p

0 (Ω).
For the strong convergence, we use (4) and get that

1

2
‖ȳ‖2

W 1,p
0 (Ω)

≥ lim sup
k→∞

1

2
‖yk‖2W 1,p

0 (Ω)
. (5)

By the weak convergence already proven we get

1

2
‖ȳ‖2

W 1,p
0 (Ω)

≤ lim inf
k→∞

1

2
‖yk‖2W 1,p

0 (Ω)
. (6)

Then, it follows, from (5) and (6) that ȳk → ȳ strongly in W 1,p
0 (Ω), using

Proposition 3.32, page 78, H. Brezis, [5]. The convergence is valid without
taking subsequences since the limit is unique.

3 The dual problem

In this section we shall use the dual of the problem (2) to solve problem (1).
We apply Fenchel’s duality Theorem to obtain the dual problems associated

to problems (1) and (2). For this purpose we consider the functional

F (y) =
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy, y ∈W 1,p
0 (Ω). (7)

Let q be the exponent conjugate of p. Using the definition of the convex
conjugate and the fact that the duality mapping J : W 1.p

0 (Ω) → W−1,q(Ω) is
a single-valued and bijective operator, we get that the convex conjugate of F
is

F ∗(y∗) =
1

2
‖f + y∗‖2W−1,q(Ω)

The argument is similar with the one used for p = 2 in V. Barbu, Th. Precu-
panu, [4], page 192.
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Considering now the functional g = −IW 1,p
0 (Ω)+

and using the concave

conjugate definition we get that

g•(y∗) =

{
0, y∗ ∈ (W 1,p

0 (Ω)+)∗

−∞, y∗ 6∈ (W 1,p
0 (Ω)+)∗

with (W 1,p
0 (Ω)+)∗ = {y∗ ∈ W−1,q(Ω) : (y, y∗) ≥ 0,∀y ∈ W 1,p

0 (Ω)+} =
W−1,q(Ω)+.

Since F and −g are convex and proper functionals on W 1,p(Ω), the domain
of g is D(g) = W 1,p

0 (Ω)+, and F is continuous everywhere on W 1,p
0 (Ω)+ we

are able to apply Fenchel duality Theorem (V. Barbu, Th. Precupanu, [4], pp
189) and obtain

min
y∈W 1,p

0 (Ω)+

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy

}
=

max

{
−1

2
‖f + y∗‖2W−1,q(Ω) : y∗ ∈W−1,q(Ω)+

}
.

The dual problem associated to problem (1) is

max

{
−1

2
‖f + y∗‖2W−1,q(Ω) : y∗ ∈W−1,q(Ω)+

}
.

For the approximate problem (2) we only need the concave conjugated
of gk = −ICk

due to the fact that we minimize the same functional F over
another cone. Thus, the concave conjugate is

g•k(y∗) = inf {(y, y∗)− gk(y) : y ∈ Ck} =

{
0, y∗ ∈ C∗k
−∞, y∗ 6∈ C∗k

where C∗k = {y∗ ∈W−1,q(Ω) : (y∗, y) ≥ 0,∀y ∈ Ck}.

Lemma 1. The polar cone of Ck is

C∗k =

{
u =

k∑
i=1

αiδxi
: αi ≥ 0

}

where δxi
are the Dirac distributions concentrated in xi ∈ Ω, i.e. δxi

(y) =
y(xi), y ∈W 1,p

0 (Ω).

Proof. We consider

Ĉk =

{
u =

k∑
i=1

αiδxi
: αi ≥ 0

}
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First, the Dirac distributions δxi are linear and continuous functionals due
to the fact that W 1,p

0 (Ω) ⊂ C(Ω). This yields that Ĉk ⊂W−1,q(Ω).

The aim is to compute the polar of the cone Ĉk.
By definition of the polar cone, we have

Ĉ∗k =
{
y ∈W 1,p

0 (Ω) : (y, u) ≥ 0,∀u ∈ Ĉk
}
.

Since

(y, u) = (y,

k∑
i=1

αiδxi) =

k∑
i=1

αi(y, δxi) =

k∑
i=1

αiy(xi)

and αi ≥ 0,∀i = 1, k we obtain the equivalence

(y, u) ≥ 0 ⇔ y(xi) ≥ 0, ∀i = 1, k.

Then

Ĉ∗k =
{
y ∈W 1,p

0 (Ω) : y(xi) ≥ 0,∀i = 1, k
}

= Ck

This means that (C̄∗k)∗ = C∗k .
By the Theorem of bipolars (V. Barbu, Th. Precupanu, [4], pp 88), we

have

Ĉ∗∗k = conv(Ĉk ∪ {0}). (8)

Since 0 ∈ Ĉk and the cone Ĉk is convex, it only remains to be proven that
Ĉk is a closed cone.

Consider u ∈ Ĉk. Then we can find a sequence (un)n ∈ Ĉk convergent to
u in W−1,q(Ω). Since un ∈ Ĉk, we get

un =

k∑
i=1

αni δxi
→ u in W−1,q(Ω).

Let S(xi, r) ⊂ Ω be such that xj 6∈ S(xi, r), for i 6= j. For every i ∈
{1, 2, . . . , k}, let ρi ∈ D(S(xi, r)) ⊂ D(Ω) such that ρi(xi) = 1. Then(

k∑
i=1

αni δxi , ρj

)
→ (u, ρj), ∀j = 1, k.

We obtain

αnj → (u, ρj), ∀j = 1, k.

In the end, we denote αj = (u, ρj), ∀j = 1, k.
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Thus, from the above arguments, we conclude that

u = lim
n→∞

un = lim
n→∞

k∑
i=1

αni δxi
=

k∑
i=1

(
lim
n→∞

αni

)
δxi

=

k∑
i=1

αiδxi

This implies that u ∈ Ĉk. Thus the cone Ĉk is a closed one.
It yields that relation (8) can be rewritten as

Ĉ∗∗k = Ĉk

This shows that Ĉk = C∗k as claimed.

Since the domain of gk is D(gk) = Ck and the functional F is still continu-
ous on the closed convex cone Ck, the hypothesis of Fenchel duality Theorem
are satisfied again. This implies that

min

{
1

2
‖y‖2

W 1,p
0 (Ω)

−
∫

Ω

fy : y ∈ Ck
}

=

max

{
−1

2
‖y∗ + f‖2W−1,q(Ω) : y∗ ∈ C∗k

}
(9)

So we obtain the dual approximate problem associated to problem (2)

max

{
−1

2
‖y∗ + f‖2W−1,q(Ω) : y∗ ∈ C∗k

}
. (10)

Theorem 2. Let ȳk be the solution of the approximate problem (2) and ȳ∗k
the solution of the dual approximate problem (10). Then the two solutions are
related by the formula

ȳk = J−1(ȳ∗k + f) (11)

where J is the duality mapping J : W 1.p
0 (Ω) → W−1,q(Ω). Moreover,

(ȳ∗k, ȳk) = 0.

Proof. Applying Theorem 2.4 ( V. Barbu, Th. Precupanu, [4], pp 188) we get
the following system of equations

ȳ∗k ∈ ∂F (ȳk), (12)

−ȳ∗k ∈ ∂ICk
(ȳk) (13)

where the functional F is the functional defined as in (7).
From (12), by using the definition of the subdifferential of a convex func-

tion, we obtain ȳ∗k + f ∈ J(ȳk). Since this mapping is single-valued and
bijective, we get that ȳk = J−1(ȳ∗k + f).
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From (13), using again the definition of the subdifferential, we get

ICk
(ȳk)− ICk

(z) ≤ (−ȳ∗k, ȳk − z), ∀z ∈ Ck

Choosing z = 1
2 ȳk, it follows that

ICk
(ȳk) ≤ −(ȳ∗k, ȳk)

Then, for z = 2ȳk ∈ Ck, we get the opposite inequality

ICk
(ȳk) ≥ −(ȳ∗k, ȳk)

But, since ȳk ∈ Ck, we can conclude that

(y∗k, yk) = 0

Remark 1. Since ȳ∗k ∈ C∗k , by Lemma 1, we know

ȳ∗k =

k∑
i=1

α∗i δxi

where α∗i ≥ 0 for all i = 1, 2, . . . , k. then

(ȳ∗k, ȳk) = (

k∑
i=1

α∗i δxi , ȳk) =

k∑
i=1

α∗i (δxi , ȳk) =

k∑
i=1

α∗i ȳk(xi)

Thus,

k∑
i=1

α∗i ȳk(xi) = 0

Again ȳk ∈ Ck, and this means that ȳk(xi) ≥ 0 for all i = 1, 2, . . . , k. It follows
that

α∗i ȳk(xi) = 0, ∀i = 1, 2, . . . , k

Then, in conclusion, the Lagrange multipliers α∗i are zero if ȳk(xi) > 0 and
they can be positive only when the constraint is active, i.e. ȳk(xi) = 0.
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4 Numerical applications

In this section we apply the above theoretical results to solve the obstacle
problem (1) in dimension one.

We consider Ω = (−1, 1) and p = 2. The statement of the obstacle problem
is

min
y∈H1

0 (Ω)+

{
1

2
|y|2H1

0 (Ω) −
∫

Ω

fy

}
Using Theorem 1, we write the approximate problem

min
y∈Ck

{
1

2
|y|2H1

0 (Ω) −
∫

Ω

fy

}
(14)

where Ck = {y ∈ H1
0 (Ω) : y(xi) ≥ 0,∀i = 1, 2, . . . , k}. The set {xi : i ∈ N} is,

as above, dense in Ω.
From the equality (9), we can write the dual approximate problem

min

{
1

2
|y∗ + f |2H−1(Ω) : y∗ ∈ C∗k

}
(15)

where C∗k = {y∗ ∈ H−1(Ω) : y =
∑k
i=1 αiδxi

, αi ≥ 0,∀i = 1, 2, . . . , k}.
The duality mapping, in this case, is J : H1

0 (Ω) → H−1(Ω) and is define
as J(y) = −y′′. It is a linear bounded operator.

Let ȳk the solution of problem (14) and ȳ∗k the solution of problem (15).
Then, by Theorem 2, we get

ȳk = J−1(ȳ∗k + f).

Using the form of an element in C∗k and the fact that J is linear, we can rewrite
the above formula as

ȳk =

k∑
i=1

αiJ
−1(δxi) + J−1(f).

To compute J−1(δxi
) we consider the following Cauchy problem{
d′i = −Hi + a, pe (−1, 1)
di(−1) = 0

(16)

where Hi is the Heaviside function concentrated in xi, i.e.

Hi(x) =

{
0, x < xi
1, x > xi
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The real constant a is computed such as di(1) = 0.
Then we get that

J−1(δxi) = di =

{
1
2 (1− xi)(x+ 1), x ≤ xi
1
2 (1− xi)(x+ 1)− (x− xi), x > xi

From problem (16) we obtain that −d′′i = H ′i = δxi .
To compute J−1(f) we need to solve the problem{

−y′′f = f, pe (−1, 1)

yf (−1) = yf (1) = 0

Using the equality

|ȳk|2H1
0 (−1,1) = |ȳ∗k + f |2H−1(−1,1) =

∣∣∣ k∑
i=1

αiJ
−1(δxi

) + J−1(f)
∣∣∣2
H−1(−1,1)

that the problem (15) can be rewritten as

min

{
1

2

∣∣∣ k∑
i=1

αidi + yf

∣∣∣2
H1

0 (−1,1)
: αi ≥ 0

}
. (17)

Define the functional G : Rk → R,

G(α) =
∣∣∣ k∑
i=1

αidi + yf

∣∣∣2
H−1(−1,1)

.

Computing the norm we end up with

G(α) =

k∑
i,j=1

αiαj

∫ 1

−1

d′id
′
jdx+ 2

k∑
i=1

αi

∫ 1

−1

d′iy
′
fdx+

∫ 1

−1

(y′f )2

Let us denote

aij =

∫ 1

−1

d′id
′
jdx ∀i, j = 1, 2, . . . , k

bi =

∫ 1

−1

d′iy
′
fdx ∀i = 1, 2, . . . , k c =

∫ 1

−1

(y′f )2.

Now considering A = [aij ] and b = [bi], we can write

G(α) = αTAα+ 2bTα+ c
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It follows that solving problem (17) is in fact equivalent to solving the following
quadratic problem

min
α∈Rk

+

{
1

2
αTAα+ bTα

}
(18)

All that remains to do is to compute the elements of the matrix A and
those of the vector b. This is easily done and we obtain that

aij =

{
1
2 (1 + xi)(1− xj), j > i
1
2 (1 + xj)(1− xi), j ≤ i

and
bi = yf (xi), ∀i = 1, 2, . . . , k

Thus, the problem of finding the optimal coefficients α∗i of the solution ȳ∗k
can be done by simply applying the Matlab function quadprog.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

α k

k

The optimal coefficients

Figure 1: The coefficients {α∗i }ki=1.

Then, using the results of the Theorem 2, we find the solution ȳk of the
approximate problem (14).

Let us consider k = 200 and f = −300x. We solve (18) and we get the α∗i
coefficients represented in Figure 1

We now compute the approximate problem solution, which is represented
in Figure 2.

The same way, we can solve the problem on the interval Ω = (0, 1). We
compute again the functions

di(x) =

{
(1− xi)x, x < xi
xi(1− x), x ≥ xi
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−1 −0.5 0 0.5 1
0

1

2

3

4

5

6

7
The solution of approximative problem

y k

x

Figure 2: The approximate problem solution

and then the elements of A and b are, in this case,

aij =

{
xi(1− xj), j > i
xj(1− xi), i ≥ j i, j = 1, 2, . . . , k

and bi = yf (xi), i = 1, 2, . . . , k.

0 50 100 150 200
0

0.2

0.4

0.6

0.8

1

1.2

1.4

k

α* k

The optimal coefficients

Figure 3: The coefficients {α∗i }ki=1.

Taking again k = 200 and considering the function f(x) = −300x3 +
100x, we can compute the optimal coefficients solving problem (18). They are
represented in Figure 3.
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Consequently, we compute the solution of the approximate problem in the
same manner as above and we end up with the solution represented in Figure
4.

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

1.2

1.4
The solution of the approximative problem on Ω=[0,1]

x

y k

Figure 4: The approximate problem solution
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Email: dianam1985@yahoo.com



196 D. R. Merluşcă


