

Positive solutions for semilinear elliptic systems with sign-changing potentials

Noureddine Zeddini and Adel Ben Dkhil

Abstract

In this paper, we study the existence of positive solutions of the Dirichlet problem $-\Delta u = \lambda p(x) f(u, v)$; $-\Delta v = \lambda q(x) g(u, v)$, in D, and u = v = 0 on $\partial^{\infty} D$, where $D \subset \mathbb{R}^n$ $(n \geq 3)$ is an $C^{1,1}$ -domain with compact boundary and $\lambda > 0$. The potential functions p, q are not necessarily bounded, may change sign and the functions $f, g: \mathbb{R}^2 \to \mathbb{R}$ are continuous with f(0,0) > 0, g(0,0) > 0. By applying the Leray-Schauder fixed point theorem, we establish the existence of positive solutions for λ sufficiently small.

1 Introduction

Let D be a $C^{1,1}$ domain of \mathbb{R}^n $(n \geq 3)$ with compact boundary and let $\partial^{\infty} D = \partial D$ if D is bounded and $\partial^{\infty} D = \partial D \cup \{\infty\}$ whenever D is unbounded. This paper deals with the existence of positive continuous solutions (in the sense of distributions) for the following semilinear elliptic system

$$\begin{cases} -\Delta u = \lambda p(x) f(u, v), & \text{in } D, \\ -\Delta v = \lambda q(x) g(u, v), & \text{in } D, \\ u = v = 0 & \text{on } \partial^{\infty} D, \end{cases}$$
(1.1)

where the potential functions p, q are sign changing functions belonging to the Kato class K(D) introduced and studied in [1] and [9] and f, g satisfy the following hypothesis.

Key Words: Elliptic Systems, Positive Solution, Green potential, Leray-Shauder fixed point theorem

²⁰¹⁰ Mathematics Subject Classification: Primary 35J47,35J57; Secondary 35J08,35P30. Received: 24.01.2014 Accepted: 3.09.2014.

Accepted: 3.09.2014.

 $(\mathbf{H_1})$ The functions $f,g:\mathbb{R}^2\to\mathbb{R}$ are continuous with f(0,0)>0 and g(0,0)>0.

In recent years, a good amount of research is established for reaction-diffusion systems. reaction-diffusions systems model many phenomena in Biology, Ecology, combustion theory, chemical reactors, population dynamics etc. And the case p(x) = q(x) = 1 has been considered as a typical example when D is a bounded regular domain in \mathbb{R}^n and many existence results where established by variational methods, topological methods and the method of sub and supersolution (see [5], [7], [4]).

Recently, Chen [2] studied the existence of positive solutions for the following system

$$\begin{cases} -\Delta u = \lambda p(x) f_1(v), & \text{in } D, \\ -\Delta v = \lambda q(x) g_1(v), & \text{in } D, \\ u = v = 0 & \text{on } \partial^{\infty} D, \end{cases}$$
(1.2)

where D is a bounded domain. He assumed that if p, q are continuous in \overline{D} and

(**H**₂) There exists $\mu_1, \mu_2 > 0$ such that

$$\int_{D} G(x,y)p_{+}(y) \, dy > (1+\mu_{1}) \int_{D} G(x,y)p_{-}(y) \, dy \quad \forall x \in D,$$

$$\int_{D} G(x,y)q_{+}(y) \, dy > (1+\mu_{2}) \int_{D} G(x,y)q_{-}(y) \, dy \quad \forall x \in D,$$

where G(x, y) is the Green's function of the Dirichlet Laplacian in D. Here p^+ , q^+ are the positive parts of p and q, while p_- , q_- are the negative ones.

The main result of Chen [2] reads as follows.

Theorem A. Let p, q be nonzero continuous functions on \overline{D} satisfying \mathbf{H}_2) and let $f_1, g_1 : [0, \infty) \to \mathbb{R}$ be continuous with $f_1(0) > 0, g_1(0) > 0$. Then there exists a positive number $\lambda^* > 0$ such that (1.2) has a positive solution for $0 < \lambda < \lambda^*$.

We note that in the case where f_1 , g_1 are nonnegative nondecreasing continuous functions, $p(x) \leq 0$ in D and $q(x) \leq 0$ in D, system (1.2) was studied in [6] with nontrivial nonnegative boundary data and the existence of positive bounded solutions for (1.2) was established whenever λ is a small positive real number.

Our aim in this paper is to extend and improve, by a modified proof, the result of Chen [2] in a number of ways. First, the domain D will be bounded or an exterior domain. Second, the functions p, q are not necessarily continuous in \overline{D} .

Indeed p, q may be singular on the boundary of D. Third, the nonlinear terms $f_1(v)$ and $g_1(u)$ considered in [2] are more restrictive than the class f(u, v) and g(u, v) considered in our case. More precisely, we will establish the existence of a positive solution for (1.1) in the case where f(0,0) > 0, g(0,0) > 0 and the potentials of p, q satisfy hypothesis (\mathbf{H}_2) and belong to the Kato class introduced and studied in [1] and [9]. A nonexistence of positive bounded solution will be also given in the case where f and g are sublinear functions with f(0,0) = 0 and g(0,0) = 0. To this aim, we give in the sequel some notations and we recall some properties of the Kato class.

Definition 1.1. (See [1] and [9].) A Borel measurable function k in D belongs to the Kato class K(D) if

$$\lim_{\alpha \to 0} \sup_{x \in D} \int_{D \cap B(x,\alpha)} \frac{\rho(y)}{\rho(x)} G(x,y) |k(y)| dy = 0$$

and satisfies further

$$\lim_{M \to \infty} \sup_{x \in D} \int_{D \cap \{|y| \ge M\}} \frac{\rho(y)}{\rho(x)} G(x, y) |k(y)| dy = 0 \quad (\text{ whenever } D \text{ is unbounded}),$$

where $\rho(x) = \min(1, \delta(x))$ and $\delta(x)$ denotes the euclidian distance from x to the boundary of D.

We remark that in the case where D is bounded an if d denotes its diameter, then

$$\frac{1}{1+d}\delta(x) \le \rho(x) \le \delta(x).$$

So in this case, we can replace $\rho(x)$ by $\delta(x)$ in the Definition 1.1. Next, we give some examples of functions belonging to K(D).

Example 1.1. (see [1] and [9])

(1) Let D be a bounded domain of \mathbb{R}^n .

(a) Let
$$q(y) = \frac{1}{(\delta(x))^{\lambda}}$$
. Then $q \in K(D)$ if and only if $\lambda < 2$.

(b) Let $p > \frac{n}{2}$, then for $\lambda < 2 - \frac{n}{p}$, we have $\frac{1}{\delta(.)^{\lambda}} L^p(D) \subset K(D)$. In particular $L^p(D) \subset K(D)$.

(c) Let D = B(0,1) and let q be a Borel radial function in D, then $q \in K(D)$ if and only if $\int_0^1 r(1-r)|q(r)| dr < \infty$.

(2) Let D be a $C^{1,1}$ -exterior domain in \mathbb{R}^n $(n \ge 3)$. The function $x \to \frac{1}{(|x|+1)^{\mu-\lambda} \,\delta(x)^{\lambda}} \in K(D)$ if and only if $\lambda < 2 < \mu$.

(3) Let $D = \overline{B(0,1)^c}$ be the exterior of the unit closed ball in \mathbb{R}^n $(n \ge 3)$ and let q be a Borel radial function in D, then $q \in K(D)$ if and only if $\int_1^\infty (r-1) |q(r)| dr < \infty.$

For any nonnegative Borel measurable function φ in D, we denote by $V\varphi$ the Green potential of φ defined on D by

$$V\varphi(x) = \int_D G(x,y)\varphi(y)dy.$$

Recall that if $\varphi \in L^1_{loc}(D)$ and $V\varphi \in L^1_{loc}(D)$, then we have in the distributional sense (see [3] p. 52)

$$\Delta(V\varphi) = -\varphi \quad \text{in } D. \tag{1.3}$$

Our main results are as follows.

Theorem 1.2. Let p, q be in the Kato class K(D) and assume that hypotheses $(\mathbf{H}_1) - (\mathbf{H}_2)$ are satisfied. Then there exists $\lambda_0 > 0$ such that for each $\lambda \in (0, \lambda_0)$, problem (1.1) has a positive continuous solution in D.

For the nonexistence of positive bounded solutions, we establish

Theorem 1.3. Let p, q be two nontrivial functions in the Kato class K(D). Assume that the functions $f, g : \mathbb{R}^2 \to \mathbb{R}$ are measurable and there exists a positive constant M such that for all u, v we have,

$$|f(u,v)| \le M(|u| + |v|) |g(u,v)| \le M(|u| + |v|).$$

Then there exists $\lambda_0 > 0$ such that the problem (1.1) has no bounded positive continuous solution in D for each $\lambda \in (0, \lambda_0)$.

Throughout this paper, we denote by B(D) the set of Borel measurable functions in D and by $C_0(D)$ the set of continuous ones satisfying $\lim_{x\to\xi\in\partial^\infty D} u(x) = 0.$

Finally, for a bounded real function ω defined on a set S we denote by $\|\omega\|_{\infty} = \sup_{x \in S} |\omega(x)|$.

2 Proof of Theorems 1.2 and 1.3

We begin this section by giving a continuity result.

Proposition 2.1. (see [1] and [9]) Let φ be a nonnegative function in K(D). Then we have

- i) The function $y \to \frac{\delta(y)}{(1+|y|)^{n-1}}\varphi(y)$ is in $L^1(D)$. In particular $\varphi \in L^1_{loc}(D)$.
- ii) $V\varphi \in C_0(D)$.
- iii) Let h_0 be a positive harmonic function in D which is continuous and bounded in \overline{D} . Then the family of functions

$$\left\{\int_D G., y) h_0(y) p(y) dy: |p| \leq \varphi \right\}$$

is relatively compact in $C_0(D)$.

Next, we recall first the Leray-Schauder fixed point theorem.

Lemma 2.2. (Leray-Schauder fixed point theorem) Let X be a Banach space with norm $\|.\|$ and x_0 be a point of X. Suppose that $T: X \times [0,1] \to X$ is continuous and compact with $T(x,0) = x_0$, for each $x \in X$, and there exists a fixed constant M > 0 such that each solution $(x,\sigma) \in X \times [0,1]$ of the $T(x,\sigma) = x$ satisfies $||x|| \leq M$. Then T(.,1) has a fixed point.

Using this Lemma, we obtain the following general existence result.

Lemma 2.3. Suppose that p and q are in the Kato class K(D) and f, g are continuous and bounded from \mathbb{R}^2 to \mathbb{R} . Then for every $\lambda \in (0, \infty)$, problem (1.1) has a solution $(u_{\lambda}, v_{\lambda}) \in C_0(D) \times C_0(D)$.

Proof. For $\lambda \in \mathbb{R}$, we consider the operator T_{λ} : $C_0(D) \times C_0(D) \times [0,1] \rightarrow C_0(D) \times C_0(D)$ defined by

$$T_{\lambda}((u, v), \sigma) = (\sigma \,\lambda V(p \, f(u, v)), \sigma \,\lambda V(q \, g(u, v))).$$

By Proposition 2.1, the operator T_{λ} is well defined, continuous, compact and $T_{\lambda}((u, v), 0) = (0, 0) := x_0 \in C_0(D) \times C_0(D)$. Let $(u, v) \in C_0(D) \times C_0(D)$ and $\sigma \in [0, 1]$ such that $T_{\lambda}((u, v), \sigma) = (u, v)$. Then, since f, g are bounded and p, q are in K(D) we deduce by using Proposition 2.1 that

$$\max(\|u\|_{\infty}, \|v\|_{\infty}) = \sigma \lambda \max(\|V(pf(u,v))\|_{\infty}, \|V(qg(u,v))\|_{\infty})$$

$$\leq \lambda \max(\|Vp\|_{\infty} \|f\|_{\infty}, \|Vq\|_{\infty} \|g\|_{\infty})$$

$$= M.$$

Hence by Leray-Schauder fixed point theorem, the operator $T_{\lambda}(.,1)$ has a fixed point. Namely, there exists $(u, v) \in C_0(D) \times C_0(D)$ such that $(u, v) = (\lambda V(p f(u, v)), \lambda V(q g(u, v)))$. So, using (1.3) and Proposition 2.1, we deduce that (u, v) is a solution of system (1.1).

Proof of Theorem 1.2. Fix a large number M > 0 and an infinitely continuously differentiable function ψ with compact support on \mathbb{R}^2 such that $\psi = 1$ in the open ball with center 0 and radius M and $\psi = 0$ on the exterior of the ball with center 0 and radius 2M. Define the bounded functions \tilde{f}, \tilde{g} on \mathbb{R}^2 by $\tilde{f}(u, v) = \psi(u, v)f(u, v)$ and $\tilde{g}(u, v) = \psi(u, v)g(u, v)$. By Lemma 2.3, the Dirichlet problem:

$$\begin{cases} -\Delta u = \lambda p(x) \widetilde{f}(u, v), & \text{in } D, \\ -\Delta v = \lambda q(x) \widetilde{g}(u, v), & \text{in } D, \\ u = v = 0 & \text{on } \partial^{\infty} D, \end{cases}$$
(2.1)

has a solution $(u_{\lambda}, v_{\lambda}) \in C_0(D) \times C_0(D)$ satisfying

$$(u_{\lambda}, v_{\lambda}) = (\lambda V(pf(u_{\lambda}, v_{\lambda}))\lambda V(q\tilde{g}(u_{\lambda}, v_{\lambda}))).$$

Moreover

$$\max(\|u_{\lambda}\|_{\infty}, \|v_{\lambda}\|_{\infty}) \le \lambda \max(\|Vp\|_{\infty}\|f\|_{\infty}, \|Vq\|_{\infty}\|\widetilde{g}\|_{\infty})$$
(2.2)

Put $\mu = \min(\mu_1, \mu_2)$ and consider $\gamma \in (0, \frac{\mu}{2+\mu})$. Since \tilde{f} and \tilde{g} are continuous, then there exists $\delta \in (0, M)$ such that if $\max(|\zeta|, |\xi|) < \delta$, we have $\tilde{f}(0, 0)(1 - \gamma) < \tilde{f}(\zeta, \xi) < \tilde{f}(0, 0)(1 + \gamma)$ and $\tilde{g}(0, 0)(1 - \gamma) < \tilde{g}(\zeta, \xi) < \tilde{g}(0, 0)(1 + \gamma)$. Using (2.2), we deduce that there exists $\lambda_0 > 0$ such that $||u_\lambda||_{\infty} < \delta$ and $||v_\lambda||_{\infty} < \delta$ for any $\lambda \in (0, \lambda_0)$. This together with the fact that $0 < \delta < M$ implies that for $\lambda \in (0, \lambda_0)$, we have $\tilde{f}(u_\lambda, v_\lambda) = f(u_\lambda, v_\lambda)$ and $\tilde{g}(u_\lambda, v_\lambda) = g(u_\lambda, v_\lambda)$.

Now, for each $x \in D$ we have

$$\begin{split} u_{\lambda} &= \lambda V(p_{+}\tilde{f}(u_{\lambda},v_{\lambda})) - \lambda V(p_{-}\tilde{f}(u_{\lambda},v_{\lambda})) \\ &> \lambda f(0,0)(1-\gamma)V(p_{+}) - \lambda f(0,0)(1+\gamma)V(p_{-}) \\ &> \lambda f(0,0)[(1-\gamma)(1+\mu_{1}) - (1+\gamma)]V(p_{-}) \\ &> \lambda f(0,0)(1-\gamma) \left[1+\mu_{1} - \frac{1+\gamma}{1-\gamma}\right]V(p_{-}) \\ &> \lambda f(0,0)(1-\gamma) \left[1+\mu - \frac{1+\gamma}{1-\gamma}\right]V(p_{-}). \end{split}$$

Now, since $\gamma \in (0, \frac{\mu}{2+\mu})$, then $1 + \mu - \frac{1+\gamma}{1-\gamma} > 0$ and it follows that $\lambda f(0,0)(1-\gamma) \left[1 + \mu - \frac{1+\gamma}{1-\gamma}\right] V(p_-) \ge 0$. Consequently, for each $\lambda \in (0, \lambda_0)$ and for each $x \in D$ we have $u_{\lambda}(x) > 0$. Similarly, we obtain $v_{\lambda}(x) > 0$ for each $x \in D$.

Proof of Theorem 1.3 Suppose that (1.1) has a bounded positive solution (u, v) for $\lambda > 0$. Then f(u, v) and g(u, v) are bounded. Put $\tilde{u} = \lambda V(p f(u, v))$ and $\tilde{v} = \lambda V(q g(u, v))$. Since f(u, v) and g(u, v) are bounded, then the functions $\tilde{u}, \tilde{v} \in C_0(D)$. The functions $z = u - \tilde{u}$ and $\omega = v - \tilde{v}$ are harmonic in the distributional sense and continuous in D, so they are harmonic in the classical sense. Moreover, since $u = \tilde{u} = v = \tilde{v} = 0$ on $\partial^{\infty}D$ then $u = \tilde{u}$ and $v = \tilde{v}$ in D. Which implies

$$\begin{aligned} \|u\|_{\infty} &\leq \lambda V(|p|f(u,v)) \leq \lambda M \, \|V(|p|)\|_{\infty} \left(\|u\|_{\infty} + \|v\|_{\infty}\right), \\ \|v\|_{\infty} &\leq \lambda V(|q|g(u,v)) \leq \lambda M \, \|V(|q|)\|_{\infty} \left(\|u\|_{\infty} + \|v\|_{\infty}\right). \end{aligned}$$

By adding these inequalities, we obtain

$$(\|u\|_{\infty} + \|v\|_{\infty}) \le \lambda M [\|V(|p|)\|_{\infty} + \|V(|q|)\|_{\infty}] (\|u\|_{\infty} + \|v\|_{\infty}).$$

This gives a contradiction if $\lambda M [||V(|p|)||_{\infty} + ||V(|q|)||_{\infty}] < 1.$

Example 2.1. Let p, q be two measurable radial functions on the exterior of the unit ball $D = \overline{B(0,1)}^c$, $n \ge 3$. Assume that there exists $\varepsilon > 0$ such that each t > 1 and $x \in D$, we have

$$\begin{split} \int_{1}^{t} \frac{r^{n-1}}{(|x|\vee r)^{n-2}} \left(1 - (|x|\wedge r)^{2-n}\right) p^{+}(r) \, dr \\ & \geq (1+\varepsilon) \int_{1}^{t} \frac{r^{n-1}}{(|x|\vee r)^{n-2}} \left(1 - (|x|\wedge r)^{2-n}\right) p^{-}(r) \, dr \,, \quad and \\ \int_{1}^{t} \frac{r^{n-1}}{(|x|\vee r)^{n-2}} \left(1 - (|x|\wedge r)^{2-n}\right) q^{+}(r) \, dr \\ & \geq (1+\varepsilon) \int_{1}^{t} \frac{r^{n-1}}{(|x|\vee r)^{n-2}} \left(1 - (|x|\wedge r)^{2-n}\right) q^{-}(r) \, dr \,, \end{split}$$

then hypothesis (\mathbf{H}_2) is satisfied. Indeed (see [1]), for a nonnegative radial function k, the function $x \to \int_D G_D(x, y)k(|y|) dy$ is radial and

$$\int_D G_D(x,y)k(|y|) \, dy = a_n \, \int_1^\infty \frac{r^{n-1}}{(|x| \vee r)^{n-2}} \left(1 - (|x| \wedge r)^{2-n}\right) k(r) \, dr \,,$$

where $|x| \wedge t = \min(|x|, t), |x| \vee t = \max(|x|, t) \text{ and } a_n > 0.$

References

 I. Bachar, H. Mâagli, N. Zeddini, Estimates on the Green function and existence of positive solutions of nonlinear singular elliptic equations, Commun. Contemp. Math. 5(3) (2003) 401-434.

- [2] Ruipeng Chen, Existence of positive solutions for semilinear elliptic systems with indefinite weight, Electronic Journal of Differential Equations. 164 (2011) 1-8.
- [3] K.L. Chung, Z. Zhao, From Brownian motion to Schrodinger's equation, Springer Verlag 1995.
- [4] R. Dalmasso, Existence and uniqueness of positive solutions of semilinear elliptic systems, Nonlinear Anal. 39 (2000), 559-568.
- [5] D. G. de Figueiredo, J. Marcos do O, B. Ruf, An Orlicz space approach to superlinear elliptic systems, J. Func. Anal. 224 (2005), pp. 471-496.
- [6] A. Ghanmi, H. Mâagli, V. S. Turki, N. Zeddini, Existence of positive bounded solutions for some nonlinear elliptic systems, J. Math. Anal. Appl. 352(2009) 440-448.
- [7] D. Hulshof, R. Van der Vorst, Differential systems with strongly indefinite variational structure, J. Func. Anal. 114 (1993), pp. 32-58.
- [8] J. Tyagi, Existence of non-negative solutions for predator-prey elliptic systems with a sign-changing nonlinearity, Electronic Journal of Differential Equations. 153 (2011) 1-9.
- [9] H. Mâagli, M. Zribi, On a new Kato class and singular solutions of a nonlinear elliptic equation in bounded domains, Positivity, 9 (2005) 667-686.
- [10] D. D. Hai, Positive solutions of elliptic boundary value problems, J. Math. Anal. Appl, 227 (1998), 195-199.

Noureddine Zeddini, Department of Mathematics, College of Sciences and Arts, King Abdulaziz University, Rabigh Campus Box 344, Rabigh 21911, Saudi Arabia. Email: nalzeddini@kau.edu.sa noureddine.zeddini@ipein.rnu.tn

Adel Ben Dkhil, Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis El-Manar, Campus Universitaire, 2092 Tunis, Tunisia. Email:Adel.Bendekhil@ipein.rnu.tn