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Positive solutions for semilinear elliptic systems
with sign-changing potentials

Noureddine Zeddini and Adel Ben Dkhil

Abstract

In this paper, we study the existence of positive solutions of the
Dirichlet problem −∆u = λ p(x)f(u, v) ; −∆v = λ q(x)g(u, v), in D,
and u = v = 0 on ∂∞D, where D ⊂ Rn (n ≥ 3) is an C1,1-domain
with compact boundary and λ > 0. The potential functions p, q are not
necessarily bounded, may change sign and the functions f, g : R2 → R
are continuous with f(0, 0) > 0, g(0, 0) > 0. By applying the Leray-
Schauder fixed point theorem, we establish the existence of positive
solutions for λ sufficiently small.

1 Introduction

Let D be a C1,1 domain of Rn (n ≥ 3) with compact boundary and let ∂∞D =
∂D if D is bounded and ∂∞D = ∂D ∪ {∞} whenever D is unbounded. This
paper deals with the existence of positive continuous solutions (in the sense of
distributions) for the following semilinear elliptic system −∆u = λp(x)f(u, v), in D,

−∆v = λq(x)g(u, v), in D,
u = v = 0 on ∂∞D,

(1.1)

where the potential functions p, q are sign changing functions belonging to
the Kato class K(D) introduced and studied in [1] and [9] and f, g satisfy the
following hypothesis.
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(H1) The functions f, g : R2 → R are continuous with f(0, 0) > 0 and
g(0, 0) > 0.

In recent years, a good amount of research is established for reaction-diffusion
systems. reaction-diffusions systems model many phenomena in Biology, Ecol-
ogy, combustion theory, chemical reactors, population dynamics etc. And the
case p(x) = q(x) = 1 has been considered as a typical example when D is a
bounded regular domain in Rn and many existence results where established
by variational methods, topological methods and the method of sub and su-
persolution (see [5], [7], [4]).

Recently, Chen [2] studied the existence of positive solutions for the following
system  −∆u = λp(x)f1(v), in D,

−∆v = λq(x)g1(v), in D,
u = v = 0 on ∂∞D,

(1.2)

where D is a bounded domain. He assumed that if p, q are continuous in D
and

(H2) There exists µ1, µ2 > 0 such that∫
D

G(x, y)p+(y) dy > (1 + µ1)

∫
D

G(x, y)p−(y) dy ∀x ∈ D,∫
D

G(x, y)q+(y) dy > (1 + µ2)

∫
D

G(x, y)q−(y) dy ∀x ∈ D,

where G(x, y) is the Green’s function of the Dirichlet Laplacian in D. Here
p+, q+ are the positive parts of p and q, while p−, q− are the negative ones.

The main result of Chen [2] reads as follows.

Theorem A. Let p, q be nonzero continuous functions on D satisfying H2)
and let f1, g1 : [0,∞) → R be continuous with f1(0) > 0, g1(0) > 0. Then
there exists a positive number λ? > 0 such that (1.2) has a positive solution
for 0 < λ < λ?.

We note that in the case where f1, g1 are nonnegative nondecreasing contin-
uous functions, p(x) ≤ 0 in D and q(x) ≤ 0 in D, system (1.2) was studied
in [6] with nontrivial nonnegative boundary data and the existence of positive
bounded solutions for (1.2) was established whenever λ is a small positive real
number.

Our aim in this paper is to extend and improve, by a modified proof, the result
of Chen [2] in a number of ways. First, the domain D will be bounded or an ex-
terior domain. Second, the functions p, q are not necessarily continuous in D.
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Indeed p, q may be singular on the boundary of D. Third, the nonlinear terms
f1(v) and g1(u) considered in [2] are more restrictive than the class f(u, v) and
g(u, v) considered in our case. More precisely, we will establish the existence
of a positive solution for (1.1) in the case where f(0, 0) > 0 , g(0, 0) > 0 and
the potentials of p , q satisfy hypothesis (H2) and belong to the Kato class
introduced and studied in [1] and [9]. A nonexistence of positive bounded
solution will be also given in the case where f and g are sublinear functions
with f(0, 0) = 0 and g(0, 0) = 0. To this aim, we give in the sequel some
notations and we recall some properties of the Kato class.

Definition 1.1. (See [1] and [9].) A Borel measurable function k in D belongs
to the Kato class K(D) if

lim
α→0

sup
x∈D

∫
D∩B(x,α)

ρ(y)

ρ(x)
G(x, y)|k(y)|dy = 0

and satisfies further

lim
M→∞

sup
x∈D

∫
D∩{|y|≥M}

ρ(y)

ρ(x)
G(x, y)|k(y)|dy = 0 ( whenever D is unbounded),

where ρ(x) = min(1, δ(x)) and δ(x) denotes the euclidian distance from x to
the boundary of D.

We remark that in the case where D is bounded an if d denotes its diameter,
then

1

1 + d
δ(x) ≤ ρ(x) ≤ δ(x).

So in this case, we can replace ρ(x) by δ(x) in the Definition 1.1.
Next, we give some examples of functions belonging to K(D).

Example 1.1. (see [1] and [9])

(1) Let D be a bounded domain of Rn.

(a) Let q(y) = 1
(δ(x))λ

. Then q ∈ K(D) if and only if λ < 2.

(b) Let p > n
2 , then for λ < 2− n

p , we have 1
δ(.)λ

Lp(D) ⊂ K(D). In

particular Lp(D) ⊂ K(D).

(c) Let D = B(0, 1) and let q be a Borel radial function in D, then

q ∈ K(D) if and only if
∫ 1

0
r(1− r)|q(r)| dr <∞.

(2) Let D be a C1,1-exterior domain in Rn (n ≥ 3). The function x →
1

(|x|+1)µ−λ δ(x)λ
∈ K(D) if and only if λ < 2 < µ.
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(3) Let D = B(0, 1)c be the exterior of the unit closed ball in Rn (n ≥ 3)
and let q be a Borel radial function in D, then q ∈ K(D) if and only if∫∞
1

(r − 1) |q(r)| dr <∞.

For any nonnegative Borel measurable function ϕ in D, we denote by V ϕ
the Green potential of ϕ defined on D by

V ϕ(x) =

∫
D

G(x, y)ϕ(y)dy.

Recall that if ϕ ∈ L1
loc(D) and V ϕ ∈ L1

loc(D), then we have in the distribu-
tional sense (see [3] p. 52)

∆(V ϕ) = −ϕ in D. (1.3)

Our main results are as follows.

Theorem 1.2. Let p, q be in the Kato class K(D) and assume that hypotheses
(H1) − (H2) are satisfied. Then there exists λ0 > 0 such that for each λ ∈
(0, λ0), problem (1.1) has a positive continuous solution in D.

For the nonexistence of positive bounded solutions, we establish

Theorem 1.3. Let p , q be two nontrivial functions in the Kato class K(D).
Assume that the functions f, g : R2 → R are measurable and there exists a
positive constant M such that for all u , v we have,

|f(u, v)| ≤M(|u|+ |v|)
|g(u, v)| ≤M(|u|+ |v|).

Then there exists λ0 > 0 such that the problem (1.1) has no bounded positive
continuous solution in D for each λ ∈ (0, λ0).

Throughout this paper, we denote by B(D) the set of Borel measurable
functions in D and by C0(D) the set of continuous ones satisfying
limx→ξ∈∂∞D u(x) = 0.
Finally, for a bounded real function ω defined on a set S we denote by ‖ω‖∞ =
sup
x∈S
|ω(x)|.

2 Proof of Theorems 1.2 and 1.3

We begin this section by giving a continuity result.

Proposition 2.1. (see [1] and [9]) Let ϕ be a nonnegative function in K(D).
Then we have
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i) The function y → δ(y)
(1+|y|)n−1ϕ(y) is in L1(D). In particular ϕ ∈ L1

loc(D).

ii) V ϕ ∈ C0(D).

iii) Let h0 be a positive harmonic function in D which is continuous and
bounded in D. Then the family of functions{∫

D

G., y)h0(y)p(y)dy : |p| ≤ ϕ
}

is relatively compact in C0(D).

Next, we recall first the Leray-Schauder fixed point theorem.

Lemma 2.2. (Leray-Schauder fixed point theorem) Let X be a Banach space
with norm ‖.‖ and x0 be a point of X. Suppose that T : X × [0, 1] → X is
continuous and compact with T (x, 0) = x0, for each x ∈ X, and there exists
a fixed constant M > 0 such that each solution (x, σ) ∈ X × [0, 1] of the
T (x, σ) = x satisfies ‖x‖ ≤M . Then T (., 1) has a fixed point.

Using this Lemma, we obtain the following general existence result.

Lemma 2.3. Suppose that p and q are in the Kato class K(D) and f, g are
continuous and bounded from R2 to R. Then for every λ ∈ (0,∞), problem
(1.1) has a solution (uλ, vλ) ∈ C0(D)× C0(D).

Proof. For λ ∈ R, we consider the operator Tλ : C0(D)×C0(D)× [0, 1]→
C0(D)× C0(D) defined by

Tλ((u, v), σ) = (σ λV (p f(u, v)), σ λV (q g(u, v))).

By Proposition 2.1, the operator Tλ is well defined, continuous, compact and
Tλ((u, v), 0) = (0, 0) := x0 ∈ C0(D)×C0(D). Let (u, v) ∈ C0(D)×C0(D) and
σ ∈ [0, 1] such that Tλ((u, v), σ) = (u, v). Then, since f, g are bounded and p,
q are in K(D) we deduce by using Proposition 2.1 that

max(‖u‖∞, ‖v‖∞) = σ λ max(‖V (pf(u, v))‖∞, ‖V (qg(u, v))‖∞)

≤ λ max(‖V p‖∞‖f‖∞, ‖V q‖∞‖g‖∞)

= M.

Hence by Leray-Schauder fixed point theorem, the operator Tλ(., 1) has a
fixed point. Namely, there exists (u, v) ∈ C0(D) × C0(D) such that (u, v) =
(λV (p f(u, v)), λ V (q g(u, v))). So, using (1.3) and Proposition 2.1, we deduce
that (u, v) is a solution of system (1.1).
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Proof of Theorem 1.2. Fix a large number M > 0 and an infinitely contin-
uously differentiable function ψ with compact support on R2 such that ψ = 1
in the open ball with center 0 and radius M and ψ = 0 on the exterior of the
ball with center 0 and radius 2M . Define the bounded functions f̃ , g̃ on R2

by f̃(u, v) = ψ(u, v)f(u, v) and g̃(u, v) = ψ(u, v)g(u, v). By Lemma 2.3, the
Dirichlet problem: −∆u = λp(x)f̃(u, v), in D,

−∆v = λq(x)g̃(u, v), in D,
u = v = 0 on ∂∞D,

(2.1)

has a solution (uλ, vλ) ∈ C0(D)× C0(D) satisfying

(uλ, vλ) = (λV (pf̃(uλ, vλ))λV (qg̃(uλ, vλ))).

Moreover

max(‖uλ‖∞, ‖vλ‖∞) ≤ λmax(‖V p‖∞‖f̃‖∞, ‖V q‖∞‖g̃‖∞) (2.2)

Put µ = min(µ1, µ2) and consider γ ∈ (0, µ
2+µ ). Since f̃ and g̃ are continuous,

then there exists δ ∈ (0,M) such that if max(|ζ|, |ξ|) < δ, we have f̃(0, 0)(1−
γ) < f̃(ζ, ξ) < f̃(0, 0)(1 + γ) and g̃(0, 0)(1− γ) < g̃(ζ, ξ) < g̃(0, 0)(1 + γ).
Using (2.2) , we deduce that there exists λ0 > 0 such that ‖uλ‖∞ < δ and
‖vλ‖∞ < δ for any λ ∈ (0, λ0). This together with the fact that 0 < δ < M

implies that for λ ∈ (0, λ0), we have f̃(uλ, vλ) = f(uλ, vλ) and g̃(uλ, vλ) =
g(uλ, vλ).
Now, for each x ∈ D we have

uλ = λV (p+f̃(uλ, vλ))− λV (p−f̃(uλ, vλ))

> λf(0, 0)(1− γ)V (p+)− λf(0, 0)(1 + γ)V (p−)

> λf(0, 0)[(1− γ)(1 + µ1)− (1 + γ)]V (p−)

> λf(0, 0)(1− γ)

[
1 + µ1 −

1 + γ

1− γ

]
V (p−)

> λf(0, 0)(1− γ)

[
1 + µ− 1 + γ

1− γ

]
V (p−).

Now, since γ ∈ (0, µ
2+µ ), then 1 + µ− 1+γ

1−γ > 0 and it follows that

λf(0, 0)(1 − γ)
[
1 + µ− 1+γ

1−γ

]
V (p−) ≥ 0. Consequently, for each λ ∈ (0, λ0)

and for each x ∈ D we have uλ(x) > 0. Similarly, we obtain vλ(x) > 0 for
each x ∈ D.
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Proof of Theorem 1.3 Suppose that (1.1) has a bounded positive solution
(u, v) for λ > 0. Then f(u, v) and g(u, v) are bounded. Put ũ = λV (p f(u, v))
and ṽ = λV (q g(u, v)). Since f(u, v) and g(u, v) are bounded, then the func-
tions ũ , ṽ ∈ C0(D). The functions z = u − ũ and ω = v − ṽ are harmonic
in the distributional sense and continuous in D, so they are harmonic in the
classical sense. Moreover, since u = ũ = v = ṽ = 0 on ∂∞D then u = ũ and
v = ṽ in D. Which implies

‖u‖∞ ≤ λV (|p|f(u, v)) ≤ λM ‖V (|p|)‖∞ (‖u‖∞ + ‖v‖∞) ,

‖v‖∞ ≤ λV (|q|g(u, v)) ≤ λM ‖V (|q|)‖∞ (‖u‖∞ + ‖v‖∞).

By adding these inequalities, we obtain

(‖u‖∞ + ‖v‖∞) ≤ λM [‖V (|p|)‖∞ + ‖V (|q|)‖∞] (‖u‖∞ + ‖v‖∞).

This gives a contradiction if λM [‖V (|p|)‖∞ + ‖V (|q|)‖∞] < 1.

Example 2.1. Let p , q be two measurable radial functions on the exterior of
the unit ball D = B(0, 1)

c
, n ≥ 3. Assume that there exists ε > 0 such that

each t > 1 and x ∈ D, we have∫ t

1

rn−1

(|x| ∨ r)n−2
(1− (|x| ∧ r)2−n) p+(r) dr

≥ (1 + ε)

∫ t

1

rn−1

(|x| ∨ r)n−2
(1− (|x| ∧ r)2−n) p−(r) dr , and∫ t

1

rn−1

(|x| ∨ r)n−2
(1− (|x| ∧ r)2−n) q+(r) dr

≥ (1 + ε)

∫ t

1

rn−1

(|x| ∨ r)n−2
(1− (|x| ∧ r)2−n) q−(r) dr ,

then hypothesis (H2) is satisfied. Indeed (see [1]), for a nonnegative radial
function k, the function x→

∫
D
GD(x, y)k(|y|) dy is radial and∫

D

GD(x, y)k(|y|) dy = an

∫ ∞
1

rn−1

(|x| ∨ r)n−2
(1− (|x| ∧ r)2−n) k(r) dr ,

where |x| ∧ t = min(|x|, t), |x| ∨ t = max(|x|, t) and an > 0.
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