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Consistency issues in PDF methods

N. Suciu, L. Schüler, S. Attinger, C. Vamoş, P. Knabner

Abstract

Concentrations of chemical species transported in random environ-
ments need to be statistically characterized by probability density func-
tions (PDF). Solutions to evolution equations for the one-point one-time
PDF are usually based on systems of computational particles described
by Itô equations. We establish consistency conditions relating the con-
centration statistics to that of the Itô process and the solution of its
associated Fokker-Planck equation to that of the PDF equation. In this
frame, we use a recently proposed numerical method which approxi-
mates PDFs by particle densities obtained with a global random walk
(GRW) algorithm. The GRW-PDF approach is illustrated for a problem
of contaminant transport in groundwater.

1 Introduction

We consider an array of species concentrations C(x, t) = {Cα(x, t)} related by
reaction terms S(C) = {Sα(C)}, α = 1, . . . , Nα, where Nα is the number of
chemical species. For constant diffusion coefficient D, reaction-diffusion pro-
cesses in statistically homogeneous random velocity fields V with divergence-
free samples, are governed by the system of Nα stochastic balance equations

∂Cα
∂t

+ Vi
∂Cα
∂xi

= D
∂2Cα
∂xi∂xi

+ Sα. (1)
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The one-point one-time PDF f(c; x, t) of the random concentrations C solving
(1) satisfies

∂f

∂t
+

∂

∂xi
(Vif)− ∂2

∂xi∂xj
(Dijf) = − ∂2

∂cα∂cβ
(Mαβf)− ∂

∂cα
(Sαf), (2)

where V and D are upscaled drift and diffusion coefficients and M is the tensor
of the average dissipation rate conditional on concentration, which accounts
for mixing by molecular diffusion. The most important feature of the PDF
methods is that the reaction term S in (2) is in a closed form, the same as in
the balance equation (1) [1].

The numerical solution of the PDF equation (2) is usually obtained by
solving a system of Itô equations describing the evolution of an ensemble of
computational particles in physical and concentration spaces [2],

dX(t) = V(X(t), t)dt+ dW(X(t), t) (3)

dC(t) = M(C(t),X(t), t)dt+ S(C(t))dt, (4)

where C(t) = C(X(t), t), W is a Wiener process with E{W(X(t), t)} = 0 and

E{W2(X(t), t)} = 2
∫ t

0
D(X(t), t′)dt′, and M is a mixing model for the term

containing the dissipation rate Mαβ in equation (2) [3]. The equations (3) and
(4) describe a stochastic process {Xi(t), Cα(t)}, Cα(t) = Cα(X(t), t), t ≥ 0,
i = 1, 2, 3, α = 1, . . . , Nα. Throughout the paper, we follow the convention
which denotes random functions by capital letters and their values in the state
space by corresponding lowercase letters. At given times t, the process takes
fixed values x = X(t) and c = C(t) in the Cartesian product state space
Ω = Ωx × Ωc, where Ωx is the three-dimensional physical space and Ωc is the
Nα-dimensional concentration space.

The joint concentration-position PDF p(c,x, t) of the process described by
the system of Itô equations (3) and (4) solves a Fokker-Planck equation which
is in general different from the PDF equation (2). In this paper we introduce
consistency conditions relating the statistics of the random field C(x, t) to that
of the stochastic process {X(t),C(t)} and derive the corresponding Fokker-
Planck equation. Further, we propose a new approach to approximate the
concentration PDF by the solution of the Fokker-Planck equation, based on a
global random walk (GRW) algorithm. Finally, we illustrate the GRW-PDF
approach for non-reactive transport in saturated aquifers.

2 PDF equations

In studies on turbulent reacting flows probability densities are usually defined
by expectations of Dirac-δ functions [1, 2, 4, 5]. For instance, the concentration



CONSISTENCY ISSUES IN PDF METHODS 189

PDF is given by
f(c; x, t) = 〈δ(C(x, t)− c)〉 , (5)

where the angular bracket indicates stochastic average with respect to the
probability measure of the random concentration vector C(x, t) and the mul-
tidimensional δ function is defined by the product

δ(C(x, t)− c) =

α=Nα∏
α=1

δ(Cα(x, t)− cα).

The consistency of (5) with stochastic averaging is ensured by the defi-
nition of the δ functional. For instance, the integral weighted by the PDF
(5) of a continuous function Q(c) over the concentration space Ωc yields the
expectation of Q as a function of the random concentration C(x, t):∫

Ωc

Q(c)f(c; x, t)dc =

〈∫
Ωc

Q(c)δ(C(x, t)− c)dc

〉
= 〈Q(C(x, t))〉 .

To derive the above relation we used the continuity of Q(c), which allows the
permutation of the integral with the stochastic average, and the obvious prop-
erty

∫
Ωc
Q(c)δ(C(x, t)−c)dc =

∫
RNα IΩc(c)Q(c)δ(C(x, t)−c)dc = Q(C(x, t)),

where IΩc is the indicator function of the set Ωc. The definition (5) can be
generalized, by using products of δ functions, to obtain a consistent hierarchy
of multi-point probability distributions which completely define the random
concentration C(x, t) as a random function [3, Appendix A.1].

A straightforward derivation of the evolution equation for the PDF f(c; x, t)
is based on the evaluation of the time derivative of its definition (5) through
formal manipulations of derivatives of δ functions [6]. In terms of Dirac dis-
tributions, the derivative of the δ function is defined by the relation∫ ∞

−∞
δ′(y0 − y)ϕ(y)dy = −

∫ ∞
−∞

δ(y0 − y)ϕ′(y)dy, (6)

for any smooth function ϕ with compact support in R. The usual notation
for the distributional derivative is δ′[ϕ] = −δ[ϕ′] = −ϕ′(y0). Further, (6) can
be generalized for the case where y0 is a given value of a composite function
of some variable x, y0 = g(x). Then, the Dirac functional applied to the test
function ϕ reads ∫ ∞

−∞
δ(g(x)− y)ϕ(y)dy = ϕ(g(x)). (7)
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The derivative of (7) with respect to x follows as

d

dx

∫ ∞
−∞

δ(g(x)− y)ϕ(y)dy = ϕ′(g(x))
dg(x)

dx

=
dg(x)

dx

∫ ∞
−∞

δ(g(x)− y)ϕ′(y)dy

= −dg(x)

dx

∫ ∞
−∞

δ′(g(x)− y)ϕ(y)dy,

where the second equality is implied by (7) and the third equality by (6). In
the common compact notation for distributions we get

d

dx
δ(g(x)− y)[ϕ] = −dg(x)

dx
δ′(g(x)− y)[ϕ],

which is often written in applications to turbulent flows as [1, 4, 6]

d

dx
δ(g(x)− y) = −dg(x)

dx

d

dy
δ(g(x)− y). (8)

The correctness of the results obtained with formal manipulations of the rela-
tion (8) can be checked by multiplying them with test functions, integrating
over y and using (6) (see e.g. [6, Sect. 2.2.1]).

Considering multidimensional δ functions and the vectorial function g =
C(x, t) one obtains, similarly to (8), the formal expression of the partial deriva-
tive with respect to the time variable,

∂

∂t
δ(C(x, t)− c) = −∂Cα(x, t)

∂t

∂

∂cα
δ(C(x, t)− c), (9)

and the partial derivatives with respect to the spatial variables,

∂

∂xi
δ(C(x, t)− c) = −∂Cα(x, t)

∂xi

∂

∂cα
δ(C(x, t)− c). (10)

Using (9), the time derivative of the PDF (5) is computed as follows:

∂f(c; x, t)

∂t
=

〈
∂

∂t
δ(C(x, t)− c)

〉
= −

〈
∂Cα(x, t)

∂t

∂

∂cα
δ(C(x, t)− c)

〉
= − ∂

∂cα

〈
∂Cα(x, t)

∂t
δ(C(x, t)− c)

〉
. (11)
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Performing the stochastic average on the right hand side of (11) requires
more information on the statistics of the random concentration C(x, t) than
the knowledge of the one-point PDF f(C; x, t). To see that, note that the
time derivative is the limit of the increment of C to the corresponding time
increment, which is a two-point quantity. Thus, a two-point PDF is needed if
one wants to perform the average before taking the limit. Alternatively, the
average can be performed if one knows the joint statistics of ∂C/∂t and C. To
obtain meaningful expressions of these kind of stochastic averages, we follow
the approach of Fox [2] and consider a generic random function Z(x, t) which
is not described by the one-point PDF f(C; x, t). Similarly to the average
occurring in (11), we have, in general and for the random function F (Z(x, t),
the average

〈F (Z(x, t))δ(C(x, t)− c)〉 =

〈
δ(C(x, t)− c)

∫
Ωz

F (z)δ(Z(x, t)− z)dz

〉
=

∫
Ωz

F (z) 〈δ(Z(x, t)− z)δ(C(x, t)− c)〉 dz

=

∫
Ωz

F (z)f(c, z; x, t)dz

= f(c; x, t)

∫
Ωz

F (z)f(z|c; x, t)dz,

where f(c, z; x, t) = 〈δ(Z(x, t)− z)δ(C(x, t)− c)〉 defines, similarly to (5),
the joint PDF in the (c, z) space and f(z|c; x, t) = f(c, z; x, t)/f(c; x, t) is a
conditional PDF. Thus, we finally obtain

〈F (Z(x, t))δ(C(x, t)− c)〉 = 〈F (Z(x, t))|C(x, t) = c〉 f(c; x, t), (12)

which is just the expectation of the random function F (Z(x, t)) conditional
on a fixed value of the concentration vector c multiplied by the one-point
PDF f(c; x, t). In the following, we use the shorthand notation 〈·|c〉 to denote
conditional averages 〈·|C(x, t) = c〉.

Now, substituting the time derivative ∂Cα(x, t)/∂t from (1) into (11) and
using (12), we obtain the evolution equation for the PDF f(c; x, t):

∂f(c; x, t)

∂t
=

∂

∂cα

{[〈
Vi
∂Cα
∂xi

∣∣∣∣c〉−〈D ∂2Cα
∂xi∂xi

∣∣∣∣c〉− Sα(c)

]
f(c; x, t)

}
.

(13)
We note that the last term in (13) is in a closed form because the reaction
term Sα in (1) is completely determined by the random concentration C, which
implies that its conditional expectation is just the value of Sα evaluated for
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the sample space value c,

〈Sα(C(x, t))|c〉 =

∫
Ωz

Sα(c)f(z|c; x, t)dz = Sα(c)

∫
Ωz

f(z|c; x, t)dz = Sα(c).

The first two terms on the right hand side of (13) are unclosed and require
modeling.

The first unclosed term can be transformed as follows:

∂

∂cα

[〈
Vi
∂Cα
∂xi

∣∣∣∣c〉 f(c; x, t)

]
=

∂

∂cα

〈
Vi
∂Cα
∂xi

δ(C(x, t)− c)

〉
= − ∂

∂xi
[〈Vi|c〉 f(c; x, t)] , (14)

where the first equality follows from (12) and to obtain the final result we
used (10) and the incompressibility condition ∂Vi/∂xi = 0. Defining the
velocity fluctuation U = V − 〈V〉 and using the gradient diffusion closure
〈U|c〉f(c; x, t) = −D∗∇f(c; x, t) [1, 2, 5], (14) becomes

∂

∂cα

[〈
Vi
∂Cα
∂xi

∣∣∣∣c〉 f(c; x, t)

]
= − ∂

∂xi
[〈Vi〉 f(c; x, t)] +

∂

∂xi
D∗i,j

∂

∂xj
f(c; x, t).

(15)
The upscaled diffusion tensor D∗i,j is provided by turbulence models [4] or by
stochastic upscaling of diffusion in random velocity fields [3, 10].

The second unclosed term in (13) is the conditional expectation of the
molecular diffusion term in equation (1). We will show that this term is
related to the divergence of the diffusive flux in physical space of the PDF
f(c; x, t), with the same diffusion coefficient D as in equation (1). Since by
(5) f(c; x, t) = 〈δ(C(x, t)− c)〉, the diffusive flux of f is determined by the
expectation of (10) and its divergence can be expressed as follows:
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D
∂2

∂xi∂xi
f(c; x, t) = D

∂2

∂xi∂xi
〈δ(C(x, t)− c〉

= −D
〈
∂2Cα
∂xi∂xi

(x, t)
∂

∂cα
δ(C(x, t)− c)− ∂Cα

∂xi
(x, t)

∂

∂cα

∂

∂xi
δ(C(x, t)− c)

〉
= − ∂

∂cα

〈
D

∂2Cα
∂xi∂xi

(x, t)δ(C(x, t)− c)

〉
+

∂2

∂cα∂cβ

〈
D
∂Cα
∂xi

∂Cβ
∂xi

δ(C(x, t)− c)

〉
= − ∂

∂cα

[〈
D

∂2Cα
∂xi∂xi

(x, t)

∣∣∣∣c〉 f(c; x, t)

]
+

∂2

∂cα∂cβ

[〈
D
∂Cα
∂xi

∂Cβ
∂xi

∣∣∣∣c〉 f(c; x, t)

]
. (16)

Using (15) and (16) to define the coefficients we get

Vi = 〈Vi〉+
∂

∂xj
D∗i,j , (17)

Dij = D +D∗i,j , (18)

Mαβ =

〈
D
∂Cα
∂xi

∂Cβ
∂xi

∣∣∣∣c)

〉
, (19)

and (13) takes the form of the PDF equation (2). The same result has been
obtained by equating the stochastic average of the operator from the left hand
side of (1) applied to a test function with that corresponding to the right hand
side of (1) and by integrating by parts [1, 2, 5, 7].

3 Consistency conditions for particle representations of
the concentration PDF

The system of Itô equations (3) and (4), used to numerically approximate the
solution of the PDF evolution equation (2) by computational particles evolving
in the state space Ω = Ωx×Ωc, describes a stochastic process {C(t),X(t)}. As
a mathematical object, this process is a random function indexed by time, with
one-time statistics completely described by the joint concentration-position
PDF p(c,x, t). On the other side, the random concentration C(x, t) is a ran-
dom function with four indices, the three spatial coordinates and the time, and
its one-point (in time and space) PDF is the solution f(c; x, t) of the evolution



CONSISTENCY ISSUES IN PDF METHODS 194

equation (2). Consequently, the two PDFs verify different normalization con-
ditions,

∫
Ω
p(c,x, t)dcdx = 1 and

∫
Ωc
f(c; x, t)dc = 1, respectively. While the

parameter x of the random concentration is a point in the physical space, X(t)
is a stochastic process described by (3), with the one-time PDF px(x, t), which
is a solution of the associated Fokker-Planck equation (equation (2) with the
right hand side set to zero). Since this equation is equivalent to an advection-
diffusion equation describing the transport of a passive scalar [3], the position
PDF px(x, t) has the meaning of a normalized concentration. Since (3) de-
scribes an upscaled transport process, it follows that px(x, t) represents the
corresponding mean concentration. A consistency condition, relating px(x, t)
to the statistics of the random concentration C(x, t), is the starting point in
designing numerical solutions to the PDF equation (2) based on the solution
of the system of Itô equations (3) and (4).

In case of a single chemical species c which is conserved, the statistics of
the Itô process is obviously consistent with that of the random concentration
if and only if

〈c〉(x, t) = px(x, t). (20)

Rewritten with the aid of the corresponding PDFs, the relation (20) becomes∫
Ωc

cf(c; x, t)dc =

∫
Ωc

p(c,x, t)dc. (21)

A sufficient condition for (21) is given by the equality of the integrants,

cf(c; x, t) = p(c,x, t). (22)

We note that when particle representations of the concentration PDF f(c; x, t)
are used to compute concentration statistics, the mean concentration is, ac-
cording to (20), the position PDF px(x, t) of the system of computational
particles. Furthermore, the average with respect to p(c,x, t) of the state space
variable c yields, according to (21), the expectation of the squared concentra-
tion. Thus, subtracting from this expectation the squared position PDF, one
obtains the variance of the random concentration,

var{c(x, t)} =

∫
Ωc

cp(c,x, t)dc− [px(x, t)]2. (23)

In case of multicomponent reactive transport, the position PDF px(x, t)
can be expressed as

px(x, t) =

∫
Ωc

p(c,x, t)dc =
1

Nα

Nα∑
α=1

∫
Ωcα

pcα,x(cα,x, t)dcα,
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that is, as an arithmetic average of position PDFs p
(α)
x =

∫
Ωcα

pcα,x(cα,x, t)dcα

associated to each chemical species, where pcα,x(cα,x, t) are marginal PDFs of
p(c,x, t) [7]. The natural conjecture is that the position PDF px(x, t) corre-
sponds to the expectation of the arithmetic mean of the species concentrations,

Θ(C(x, t)) =
1

C∗Nα

Nα∑
α=1

Cα(x, t), (24)

where C∗ is a normalization constant. This conjecture is thus formulated as

〈Θ〉(x, t) = px(x, t). (25)

Analogous to (22), the choice of (25) implies the following relation between
the statistics of the one-dimensional PDFs of the random concentration and
that of the Itô process:

Θ(c)f(c; x, t) = p(c,x, t). (26)

The conjecture (25) is strictly valid if the arithmetic average (24) is a
conserved quantity solving the balance equation (1) without reaction term,

∂Θ

∂t
+ Vi

∂Θ

∂xi
= D

∂2Θ

∂xi∂xi
. (27)

Then, the expectation 〈Θ〉 of a conserved scalar verifies the equation (2) with
the right hand terms set to zero [8]. Since this equation coincides with the
Fokker-Planck equation associated to the Itô equation (3), verified by px(x, t),
the equality (25) holds true. That this is indeed the case can be proved by
a slight extension of the method used by Bilger [9] to construct conserved
scalars as concentrations of chemical elements. Let rαk be the weight (e.g. the
mass fraction) of the chemical element indexed by k in the composition of the
molecules α and let Ck be the total concentration of the element k. Obviously,
the elemental mass sum to unity,

∑Nk
k=1 rαk = 1, and Ck =

∑Nα
α=1 rαkCα. It

follows that

Nk∑
k=1

Ck =

Nk∑
k=1

Nα∑
α=1

rαkCα =

Nα∑
α=1

Cα

Nk∑
k=1

rαk =

Nα∑
α=1

Cα,

that is, the sum of elemental concentrations equals the sum of species concen-
trations. Since elemental concentrations are conserved under chemical reac-
tions, the sum of species concentrations is a conserved scalar. Further, sum-
ming up the equations (1) with species independent coefficients, one obtains
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the relation
∑Nα
α=1 Sα = 0, which, when Cα are mass concentrations, expresses

the conservation of mass of the reacting system.
The conjecture (25) is thus true for Θ defined by the sum of species concen-

trations or by their arithmetic mean (24), as well as for any other conserved
scalar properly normalized. For instance, if the problem is formulated in terms
of mass concentrations, Cα = ρα, we can choose Θ =

∑Nα
α=1 ρα = ρ, where ρ

is the fluid density. Then, (26) becomes ρf(c; x, t) = p(c,x, t) and (25) takes
the form

〈ρ〉(x, t) = Mpx(x, t), (28)

where M =
∫

Ω
〈ρ〉(x, t)dx is the total mass of fluid in Ωx.

If the species concentrations are defined as mass fractions, ρα/ρ, and

their sum is used to define Θ =
∑Nα
α=1 ρα/ρ = 1, the relation (26) be-

comes f(c; x, t) = p(c,x, t) and (25) implies px(x, t) = 1, thus p(c,x, t) =
p(c|x, t)px(x, t) = p(c|x, t) and the concentration PDF equals the conditional
PDF of the system of Itô equations (3)-(4), f(c; x, t) = p(c|x, t). This choice,
which implies a constant position PDF px(x, t), is however consistent only if
the drift and diffusion coefficients in (2) are constants or if they are subject

to some constraints, for instance ∂
∂xi

Vi = ∂2

∂xi∂xi
D in case of isotropic D [4].

Uniform position PDF is also implied by (28) in case of constant density flows,
with px(x, t) = ρ/M .

Remark 1. In combustion theory [1, 5], one uses a mixture of the two
choices presented above: concentrations defined as mass fractions and the
relation (28), based on a conserved scalar constructed as a sum of mass con-
centrations, to connect the statistics of the random concentration to that of
the computational particles. This approach is nevertheless consistent and may
be used to construct a system of computational particles stochastically equiv-
alent to the PDF evolution equation [1, Sect. 3.4]. The relation (27) presumes
that the ensemble of Nα species contains both the solvent and the solutes,
otherwise the problem is not closed because the density, which is the sum of
mass concentrations, is not determined. The density weighted PDF defined
by (27) with Θ = ρ is adequate for combustion problems but it could be in-
appropriate for dilute solutions, like those transported in groundwater. The
scalar Θ defined by the sum or the arithmetic mean of the species concentra-
tion, irrespective of the particular definition chosen for concentrations, would
have the advantage that it avoids including the carrying fluid into the reaction
system and does not force a uniform position PDF for constant density fluids.
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4 The Fokker-Planck equation

It has been shown [7] that if the weighting function Θ in (26) obeys the con-
tinuity equation

∂Θ

∂t
+ Vi

∂Θ

∂xi
= 0 (29)

the evolution of the joint concentration-position PDF p(c,x, t) is described by
the following Fokker-Planck equation associated with the Itô process (3)-(4)

∂p(c,x, t)

∂t
+ 〈Vi〉

∂

∂xi
p(c,x, t) =− ∂

∂xi
[〈Ui|c〉 p(c,x, t)]

− ∂

∂cα

{[〈
D

∂2Cα
∂xi∂xi

∣∣∣∣c〉+ Sα(c)

]
p(c,x, t)

}
.

(30)

To derive equation (30) in the δ-function approach from Section 2 we make
use of the “shifting” property

Θ(c)δ(C(x, t)− c) = Θ(C(x, t))δ(C(x, t)− c), (31)

which can be readily checked by integrating both sides of (31) with respect to
c. To derive the equation for p(c,x, t) = Θ(c)f(c; x, t) = Θ(c) 〈δ(C(x, t)− c)〉
we start, as for (11), by computing its time derivative:

∂p(c,x, t)

∂t
=

∂

∂t
〈Θ(c)δ(C(x, t)− c)〉 =

∂

∂t
〈Θ(C(x, t))δ(C(x, t)− c)〉

=

〈
Θ(C(x, t))

∂

∂t
δ(C(x, t)− c)

〉
+

〈
δ(C(x, t)− c)

∂

∂t
Θ(C(x, t))

〉
= − ∂

∂cα

〈
Θ(C(x, t))

∂Cα(x, t)

∂t
δ(C(x, t)− c)

〉
+

〈
δ(C(x, t)− c)

∂

∂t
Θ(C(x, t))

〉
. (32)

In the first equality of (32) we introduced Θ(c) under average, because it is a
non-random function of the state space variable c, the second equality follows
from the shifting property (31), and for the first term in the last line we
substituted the partial spatial derivative (10) of the δ-function. With the time
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derivative of Cα from the transport equation (1), this latter term becomes

− ∂

∂cα

〈
Θ(C(x, t))

[
−Vi

∂Cα
∂xi

+D
∂2Cα
∂xi∂xi

+ Sα

]
δ(C(x, t)− c)

〉
=

∂

∂cα

〈
Θ(C(x, t))Vi

∂Cα
∂xi

δ(C(x, t)− c)

〉
− ∂

∂cα

{[〈
D

∂2Cα
∂xi∂xi

∣∣∣∣c〉+ Sα(c)

]
Θ(c)f(c; x, t)

}
. (33)

We used the shifting property (31) and the conditional average (12) to obtain
the second term on the right hand side of (33), which is just the last term of
the Fokker-Planck equation (30). The first term on the right hand side of (33)
can be rewritten by using (10) as

∂

∂cα

〈
Θ(C(x, t))Vi

∂Cα
∂xi

δ(C(x, t)− c)

〉
= −

〈
Θ(C(x, t))Vi

∂

∂xi
δ(C(x, t)− c)

〉
=

〈
δ(C(x, t)− c)

∂

∂xi
[Θ(C(x, t))Vi]

〉
−
〈

∂

∂xi
[Θ(C(x, t))Viδ(C(x, t)− c)]

〉
.

(34)

We note that due to the incompressibility condition ∂Vi/∂xi = 0 and because
Θ obeys the continuity equation (29), the first term in the final expression (34)
cancels the last term of (32). Further, using (31), (12), (26), the incompress-
ibility condition, and writing the velocity as a sum of mean and fluctuations,
the second term of (34) becomes

−
〈

∂

∂xi
[Θ(C(x, t))Viδ(C(x, t)− c)]

〉
= − ∂

∂xi
〈Θ(c)Viδ(C(x, t)− c)〉

= −〈Vi〉
∂

∂xi
p(c,x, t)− ∂

∂xi
[〈Ui|c〉 p(c,x, t)] . (35)

The Fokker-Planck equation (30) is finally obtained by recursively substituting
(35), (34), and (33) into (32).

Remark 2. A conserved combination of species concentrations Θ defined
by (24) which does not include all the constituents of the fluid satisfies equation
(27). The latter reduces to (29) only if D = 0. Then, the conditional diffusion
term on the right hand side of (30) drops out and the resulting equation
describes the evolution of the PDF in advection-reaction problems or, as an
approximation, in advection-dominated reactive transport. Equation (30) is
strictly verified when both the solutes and the solvents are considered and Θ is
defined as the total mass density of the fluid, ρ, which verifies the continuity
equation (29). Then, according to (26), the solution of the Fokker-Planck



CONSISTENCY ISSUES IN PDF METHODS 199

equation (30) is p(c,x, t) = ρ(c)f(c; x, t) = F(c,x, t), which defines the mass
density function (e.g. [1, Eq. (3.59)]).

Remark 3. It is also readily to check, by using (16), that the Fokker-
Planck equation (30) takes the form of the PDF equation (2) only if Θ is
a constant (see e.g. [7]), which implies a uniform position PDF px(x, t) =
〈Θ〉(x, t).

Expressing p(c,x, t) as a product of conditional PDF p(c|x, t) and position
PDF px(x, t), p(c,x, t) = p(c|x, t)px(x, t), and using (25) and (26) one obtains

p(c|x, t) = Θ(c)f(c; x, t)/〈Θ〉(x, t). (36)

If Θ = ρ, then the conditional PDF of the system of computational par-
ticles is a discrete representation of the density weighted PDF, p(c|x, t) =
ρ(c)f(c; x, t)/〈ρ〉.

Remark 4. The choice of a Θ which does not include the solvent among
the ensemble of species concentration is more appropriate for the case of di-
lute solutions (see Remark 1). With this choice, equation (30) is still valid for
advection-diffusion-reaction processes if the approximation Θ ' 〈Θ〉(x, t) may
be adopted. Such an “ergodic” behavior is illustrated in Figure 1, where the
concentration at the plume’s center of mass, averaged across the mean flow di-
rection, is close to the mean (thick line) if the initial condition of the transport
problem is a narrow plume with large transverse dimensions [3, 11]. The op-
posite situation of non-ergodic behavior, presented in Figure 2, corresponds to
a point-like initial condition. Within the ergodic approximation, the concen-
tration PDF f(c; x, t) can be approximated by the conditional PDF p(c|x, t),
even if px(x, t) = 〈Θ〉(x, t) is not constant. Since then p(c|x, t) ' f(c; x, t), the
Fokker-Planck equation solved by p(c|x, t) may be approximated by equation
(2).

5 Numerical solution by global random walk

The particle methods used in classical PDF approaches do not provide a direct
solution to the system of Itô equations (3)-(4) associated to the PDF equation
(2). Instead, “notional particles” are defined by their position and a “com-
position” of species concentrations Cα. Then, equation (4) is solved for each
particle, all particles are tracked in the physical space according to equation
(3), and finally, mean values and PDFs are estimated by particle densities
in cells of the physical space [1]. This approach suffers from the increase of
computational cost with the number of particles and is affected by numerical
diffusion due to the need to interpolate coefficients defined by mean values
over cells to particle positions.
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Figure 1: Ergodic behavior of cross-
section concentration for an initial
condition consisting of a large trans-
verse slab-plume.
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Figure 2: Non-ergodic behavior
of cross-section concentration for a
point-like initial condition.

As an alternative, we have proposed [7] a global random walk (GRW) ap-
proach to solve the Fokker-Planck equation (30) in a mathematically consis-
tent manner, by equivalence between Itô and Fokker-Planck representations
of diffusion processes. The GRW solution is related to a suitably weighted
concentration PDF by consistency requirements of form (26).

In the next section the GRW-PDF approach will be applied to a two dimen-
sional PDF problem for the joint concentration-position PDF p(c, x, t) which,
under ergodic conditions (see Remark 3), solves a particular form of equation
(2),

∂tp+ V
∂p

∂x
+ Vc

∂p

∂c
= D

∂2p

∂x2
+ Dc

∂2p

∂c2
. (37)

The system of Itô equations corresponding to (37) takes the form

dX(t) = Vdt+
√

2DdW1(t) (38)

dC(t) = Vcdt+
√

2DcdW2(t), (39)

where W1(t) and W2(t) are two independent standard Wiener processes.
The solution of the Fokker-Planck equation (37) is approximated by the

point-density at lattice sites of a large number of computational particles gov-
erned by equations (38) and (39). The computational particles from one lattice
site are globally scattered in groups of particles which remain at the position
determined by the drift coefficients and of particles undergoing diffusive jumps.
The number of particles in each group are binomial random variables with pa-
rameters determined by the coefficients of the Itô equations (38) and (39), the
time step δt, and the lattice constants δx and δc. The GRW algorithm may
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thus be thought as a superposition on a regular lattice of a large number weak
Euler schemes for the above system of Itô equations [3, 12].

The global scattering of n(i, j, k) particles from a lattice site (x, c) =
(iδx, jδc) at time t = kδt and the update of the particle distribution, n(l,m, k+
1), are described by the relations

n(i, j, k) = δn(i+ vi, j + vj | i, j, k)

+ δn(i+ vi + di, j + vj | i, j, k)

+ δn(i+ vi − di, j + vj | i, j, k)

+ δn(i+ vi, j + vj + dj | i, j, k)

+ δn(i+ vi, j + vj − dj | i, j, k), (40)

n(l,m, k + 1) = δn(l,m, k) +
∑

i 6=l,j 6=m

δn(l,m | i, j, k), (41)

where vi, vj , di, and dj are discrete dimensionless parameters corresponding
to the drift and diffusion coefficients of the Fokker-Planck equation (37) [7].
The constraints

ri = D
2δt

(diδx)2
≤ 1, rj = Dc

2δt

(djδc)2
≤ 1 (42)

render the GRW algorithm completely free of numerical diffusion.
The GRW algorithm avoids the numerical diffusion caused by cell averages

in classical PDF approaches, because all density estimates are done for lattice
nodes, and is practically insensitive to the increase of the number of particles.
The reader is referred to [3, 12] for implementation details and convergence
estimations and to [13, 14] for comparisons with classical numerical schemes.
The speed-up with respect to sequential particle-tracking algorithms, of the
order of the number of particles (determining the computing time in sequential
algorithms) over the number of lattice points occupied by particles (determin-
ing the GRW time) [7], is also considerable in real life problems (e.g. billions
of particles over millions of grid points [11]). The simulations presented below
in Section 7, for about 100 000 lattice points and ∼ 1024 particles took about
0.5 seconds.

6 Parameterization for a problem of transport in ground-
water

Monte Carlo simulations of two-dimensional passive transport of a single chem-
ical species in saturated aquifers were used to estimate the PDF f(c;x, t) of
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cross-section concentration.

the concentration averaged over the transverse dimension Ly of the computa-

tional domain, C(x, t) =
∫ Ly

0
c(x, y, t)dy/Ly, estimated at the x-coordinate of

the plume center of mass, x = 〈V 〉t [11]. The initial plume was chosen as a
slab with transverse dimension of 100 correlation scales of the random veloc-
ity field. The sample-to-sample fluctuations of the cross-section concentration,
shown in Figure 1, are small and the ergodic assumption C(x, t) ' 〈C(x, t)〉
is justified.

The upscaled drift coefficient V in the Fokker-Planck equation (37) is the
ensemble mean velocity, equal to the velocity of the center of mass 〈V 〉 =
1 m/day. The upscaled dispersion coefficient D is the longitudinal compo-
nent of the time dependent ensemble dispersion coefficient. The latter is a
self-averaging quantity for transport in random velocity fields with finite cor-
relation range considered here. Hence, D(t) is efficiently estimated from a
single trajectory of diffusion in a realization of the random velocity field [3,
Sect. 7.2].

In case of turbulent reacting flows, the drift and diffusion coefficients Vc
and Dc which describe the transport of p(c, x, t) in the concentration space can
be estimated by using turbulence models [1, Section 5.2]. However, similar es-
timations, done for transport in groundwater failed to reproduce the evolution
of the Monte Carlo simulated PDF [7]. Much better results were obtained for
parameter estimations based on simulated concentration time series [3, 7].

In the following, let us have a closer look at the behavior of such time
series. Figures 3 and 4 show 500 time series realizations and the mean time
series, respectively, obtained by Monte Carlo simulations of two dimensional
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transport with a GRW algorithm [11]. The rate of decay of the mean con-
centration d〈C〉(t) = 〈C〉(t + 1) − 〈C〉(t) has been used as a discrete form of
the drift displacement Vcdt in the concentration space [3, 7]. In those papers,
it was implicitly assumed that the noise is stationary and Gaussian and the
diffusive displacement in the concentration space was simulated by a diffusion
coefficient inferred from comparisons with the Monte Carlo simulated PDF.

The noisy component ξ(t) = dC(t) − d〈C〉(t) of the concentration incre-
ments dC(t) = C(t + 1) − C(t), computed for all 500 time series shows an
exponential decay in amplitude (Figure 5). Its histogram (Figure 6) looks
more like a δ function than a Gaussian probability density. In order to refine
the analysis, we represent the noise ξ(t) normalized by its maximum amplitude
‖ξ‖(t) = max{|ξ(t)|} in Figure 7. Now, ξ(t)/‖ξ‖(t) looks like a white noise
and its histogram shown in Figure 8 is close to a Gaussian. Thus, the statisti-
cal analysis of the concentration time series supports the assumption that the
generic mixing model M from (4) can be represented as a sum of drift and dif-
fusion displacements in the concentration space, like in the Itô equation (39).
The diffusion coefficient adopted starts from a value Dc = 2.5×10−6 m2 day−1

adjusted by comparisons with the Monte Carlo results and decays in exponen-
tially time, similarly to the dC noise in Figure 5.

7 GRW-PDF simulations

Since the cross-section concentration C(x, t) for the transport process con-
sidered here (Section 6) is ergodic with a good approximation, f(c;x, t) is
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well approximated by the conditional PDF p(c|x, t) (Remark 4). The lat-
ter is determined from the concentration-position PDF and position PDF by
p(c|x, t) = p(c, x, t)/p(x, t). The initial distribution of particles in the (x, c)
plane is given by the Monte Carlo PDF at t = 1 day multiplied by 1024 par-
ticles. The initial condition and contours for one and 106 particles during the
GRW simulation are shown in Figure 9.

Besides the GRW-PDF simulation with parameters presented in Section 6,
denoted in the following by GRW1, we also conducted a simulation with drift
coefficient in the concentration space given by C(t + 1) − C(t), for a single
realization C(t), instead of the rate of decay of the mean concentration, while
keeping the rest of parameters the same. The latter is denoted by GRW2.

Since, according to (20), the mean concentration 〈C(x, t)〉 equals the po-
sition PDF p(x, t), obtained by integrating over the c-coordinate the joint
PDF p(c, x, t), it does not depend on the parameters of the concentration Itô
equation (39) and the results for GRW1 and GRW2 are identical (Figure 10).

The results for the concentration PDF f(c;x, t) ' p(c|x, t) presented in
Figure 11 show more pronounced differences between GRW1 and GRW2 at
early times. The cumulative distribution functions presented in Figure 12 al-
low a better comparison with the Monte Carlo results. One sees that GRW1
provides a quite good approximation of the Monte Carlo result, especially
for the transport of the probability distribution in the concentration space.
The GRW2 result is also an acceptable approximation of the cumulative dis-
tribution and at large times it becomes indistinguishable from the GRW1
approximation.
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Remark 5 The good performance of GRW2 simulation can be seen as
an indication that mixing models M in the form of advection-diffusion in
concentration spaces may be obtained by separating the trend and the noise
in a single-realization measured concentration time series. Such measurement-
based parameterizations could benefit from advanced methods in time series
analysis [15] as well as of automatic detrending algorithms [16].

8 Conclusions

The Eulerian random field of concentrations and the Itô process in physical
and concentration spaces are distinct stochastic objects and using the latter
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to solve the evolution equation for the concentration PDF raises a number
of consistency issues. The consistency of such numerical solutions is ensured
if the position PDF of the Itô process equals the expectation of a conserved
scalar, formed for instance by the sum or by the arithmetic mean of the species
concentrations. The concentration-position PDF which solves the associated
Fokker-Planck equation gives then the Eulerian concentration PDF weighted
by the conserved scalar.

Summarizing Remarks 1-4, we also note that:

• A Fokker-Planck equation equivalent to the system of Itô equations in-
volved in the numerical solution of the PDF problem, consistent with
the Eulerian PDF equation, can be derived if the weighting factor is not
only a conserved quantity but also obeys a continuity equation, as in
case of weighting by the fluid density.

• If the weighting factor is a conserved scalar which does not include the
solvent among the species concentrations and it does not verify a conti-
nuity equation, then the Fokker-Planck equation can be derived only in
an advection-reaction approximation of the full problem or under suit-
able ergodic assumptions.

• The Fokker-Planck equation takes the form of a diffusion in physical and
concentration spaces only if the weighting factor is constant or under
ergodic conditions.

The GRW algorithm is a numerical scheme with a robust mathematical
foundation for the Fokker-Planck equation associated to the PDF problem
and avoids the conceptual inconsistencies and the high computational cost of
the classical PDF methods.

The good results obtained by using a single concentration time series to
parameterize the concentration evolution equation (39) suggest the possibility
to derive parameterizations from measurements. In this paradigm, the posi-
tion Itô equation (38) can be obtained by standard upscaling methods, while
the concentration equation (39) can be inferred by detrending time series of
measured concentrations (see Remark 5). The Fokker-Planck equation (37)
is then completely determined by the Itô equations (38)-(39) and its solution
gives the weighted Eulerian PDF for problem-specific consistency conditions.
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Călin VAMOŞ and Nicolae SUCIU,
Tiberiu Popoviciu Institute of Numerical Analysis,
Romanian Academy,
Str. Fantanele 57, 400320 Cluj-Napoca, Romania.
Email: {cvamos, nsuciu}@ictp.acad.ro


