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Water flow on vegetated hill. 1D shallow water
equation type model
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Abstract

A mathematical model for the water flow on a hill covered by vari-
able distributed vegetation is proposed in this article. The model takes
into account the variation of the geometrical properties of the terrain
surface, but it assumes that the surface exhibits large curvature radius.
After describing some theoretical properties for this model, we intro-
duce a simplified model and a well-balanced numerical approximation
scheme for it. Some mathematical properties with physical relevance
are discussed and finally, some numerical results are presented.

1 Introduction

The water accumulation on the surface of the soil is a complex process in-
volving, among others, rain and infiltration. Taking into consideration only
these two phenomena, it is obvious that a water layer is produced by the rain
drops if the rain rate exceeds the infiltration rate, and this stratum of exceed-
ing water moves down the hill on the soil surface. Such flow (usually named
hortonian flow) was modelled in [7].

The presence of plants on a hill creates a resistance force to the water
flow and influences the process of water accumulation on the soil surface. The

Key Words: Hyperbolic system, finite volume method, well-balanced scheme, energy
dissipation.

2010 Mathematics Subject Classification: Primary 35Q35, 76S99; Secondary 34A34,
35L40, 65M08.

Received: November, 2014.
Revised: February, 2015.
Accepted: February, 2015.

83



SHALLOW WATER EQUATIONS 84

large diversity of growing plants on a hill makes the elaboration of an unitary
model for the water flow over the soil covered by plants very difficult. In the
analyzed model of this paper, we assume that the plants form a dense net of
rigid vertical tubes and that the water fills the “voided” space up to a level
not higher than these plant tubes (see Figure 1 for some graphical details).

Figure 1: The representative element of the volume Pδ used for averaging.
The bottom surface z(y1, y2) of Pδ has a representative width δ along two
orthogonal directions on this surface. ξ1, ξ2 are the tangent vectors at z(y1, y2)
and ν is the unit normal to this surface. The water depth h associated to Pδ
is the averaged value of the physical water depth h̃ inside Pδ.

One assumes that the terrain exhibits topographic variation but with small
curvature, and that the terrain surface is locally almost plane. One also sup-
poses that the viscosity of fluid and the fluctuation of the velocity field have
a small effect as compared to the bed friction and plant resistance. In what
follows, we will write the model equations (1) in a soil surface based curvilinear
co-ordinates system with (y1, y2) the surface coordinates. The vector or ten-
sor components relative to this co-ordinate system are indexed by a, b, c, . . .;
βca stands for the covariant components of the metric tensor, γcab are the

Christophel symbols, β =
√

det(β..), and βdy1dy2 is the area element of the
soil surface. The contravariant components of the velocity are denoted by va,
the covariant components of it by va, and they are related by va = βacv

c.
Starting from the general principles for mass and momentum balance laws
and invoking the above assumptions, one obtains the following basic model
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for water flow on vegetated hills

∂t(hβθ) + ∂a(hβθva) = β(mr − θmi), (1a)

∂t(hθβvc) + ∂a(θβhvcv
a)+

+hβθ∂cw = hθβγbacv
avb − βK(h, θ)|v|vc, c = 1, 2, (1b)

where θ is the porosity of the vegetation cover; w is, roughly speaking, the
altitude of the water surface; mr, mi are the water supply rate (from rain) and
the water loss rate (by infiltration), respectively.

These equations were obtained by averaging the macroscopic variables over
a representative element of volume Pδ placed on the land surface z(y1, y2) of
the flow and illustrated in Figure 1. The reader is referred to [7] for details
concerning the deduction of (1).

The parameter function K(h, θ) is given by

K(h, θ) = αph(1− θ) + αsθ,

where αp and αs quantifies the water-plants and water-soil interactions, respec-
tively. The model described by equations (1) is mathematically too compli-
cated for many practical applications, but it is a good basic model to generate
simplified models of certain realistic problems. Such models can be obtained
by considering stronger assumptions on the soil surface topography and the
structure of the plant cover. The porous analogy for the fluid-plant physical
system was also used in [1, 6, 8, 9, 11, 15] especially for the case of submerged
vegetation where the flow is assumed to be plan parallel. For general topogra-
phy, a mathematical model was obtained in [2]. In what follows, we introduce
a different variant (still simplified) of the full model which now allows small
variations in soil topography and plant porosity.

2 The simplified model

Assume that the soil surface is reprezented by

x1 = y1, x2 = y2, x3 = z(y1, y2), (2)

and the first derivatives of the function z(y1, y2) are small quantities.

Assumptions:

(a) Geometrical assumptions: |∇z|2 ≈ 0, ∇2z ≈ 0.

(b) Vegetation structure: θ ≈ θ0.
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Under the above assumptions, equations (1) are approximated by

∂th+ ∂a(hva) = M, (3a)

∂t(hva) + ∂b(hvav
b) + h∂aw = −K(h, θ)|v|va, a = 1, 2, (3b)

where

K(h, θ) = αph

(
1

θ
− 1

)
+ αs, M =

mr
θ
−mi, w = g

[
z(y1, y2) + h

]
. (4)

By using the “flatness” assumption (a), one can identify the covariant and
contravariant components of the velocity, va = δacv

c. (3) is a hyperbolic
system of equations with source term for which there is an energy function
that is conserved in the absence of plants and water-soil friction. Moreover,
the model preserves the steady state of a lake. These properties are more
precisely formulated in what follows.

Proposition 1. The reduced model (3) of the water flow on vegetated hill is
of hyperbolic type with source terms.
(a) Its conservative form is given by

∂tH(u) + ∂aF
a(u) = P(y,u), (5)

where u =
(
h, v1, v2

)T
, H =

(
h, hv1, hv2

)T
and

F =

 hv1 hv2

hv1v
1 + gh2/2 hv1v

2

hv2v
1 hv2v

2 + gh2/2

 ,P =

 M
−hg∂1z −K(h, θ)|v|v1.
−hg∂2z −K(h, θ)|v|v2.


(b) For any unitary vector n ∈ R3, the eigenvalue problem(

∂

∂ui
Fjana − λ

∂

∂ui
Hj

)
ri = 0, i = 1, 3

has three distinct eginvalues:

λ− = vana −
√
gh, λ0 = vana, λ+ = vana +

√
gh. (6)

Proof. The conservative form (5) results from (3) by direct calculation. To
prove the existence of the eigenvalues, one observes that

∂

∂ui
Fjana − λ

∂

∂ui
Hj =

 ψ hn1 hn2

v1ψ + ghn1 hψ + hv1n
1 hv1n

2

v2ψ + ghn2 hv2n
1 hψ + hv2n

2

 ,

where ψ = vana − λ, and then by simple calculation one obtains (6).
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Proposition 2. The following properties hold for (3):

(a) in the absence of mass sources (M = 0), the system preserves the steady
state of a lake

∂a(x3 + h) = 0, va = 0, a = 1, 2;

(b) there exists a conservative form for the equation of the energy dissipation

∂t(hE) + ∂a

(
hvaE + g

h

2

)
= M

(
−1

2
|v|2 + w

)
−K|v|3, (7)

where

E :=
1

2
|v|2 + g

(
x3 +

h

2

)
;

(c) Bernoulli law. In a steady state, in the absence of mass source and
friction force, the total energy

Et =
1

2
|v|2 + gx3 + p(y, h)

is constant along a current line

va∂aE
t = 0. (8)

Proof. The assertion (a) results immediately since the steady state of a lake
obviously verifies (3). For (b), we multiply the momentum balance equations
(3b) by va, and then, using the mass balance equation (3a) one writes

h
(
∂t(|v|2/2) + va∂a

(
|v|2/2 + w

))
= − (M + K|v|) |v|2.

Now, using again the mass balance equation one obtains the equation (7) of
the energy dissipation. Bernoulli law results from (7) and the fact that in the
shallow water approximation model the pressure field increases linearly with
the water depth, p(y, h) = gh(y).

The presence of the plants and the existence of a frictional interaction
between water and soil induce an energy loss. In order to highlight such
phenomenon, let us consider a domain Ω and n the outward oriented nor-
mal unitary vector to the boundary ∂Ω. Assume also that ∂Ω consists of an
impermeable region Γ1 and an exit region Γ2, i.e.

∂Ω = Γ1 ∪ Γ2, n · v = 0 on Γ1, and n · v > 0 on Γ2,

where one of these regions can be the empty set.
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Proposition 3 (Energy dissipation). If there is no mass production, then the
energy of Ω is a decreasing function with respect to time, i.e.

∂t

∫
Ω

hEdx < 0. (9)

Proof. The inequality (9) results immediately after integrating the equation
(7) of the energy dissipation

∂t

∫
Ω

hEdx+

∫
∂Ω

hv · nEtds = −
∫
Ω

K|v|3dx

and observing that the second term of the left hand side is positive.

There is a large amount of literature devoted to hyperbolic systems with
source term. We mention [2] and [13] as being closest to our problem and
[10] for the general problem of the existence of weak solution in the case of
non-conservative product.

3 FVM approximation of 1D simplified model

B C

DA

Figure 2: A possible (often encountered in the water flow in a hydrographic
basin) physical configuration that implies singular point in the mathematical
model. Water runs downslope and it accumulates in the deep valey. On
the surface branches AB ∪ CD the water depth is zero and in the region
corresponding to the segment BC one has u = 0 and z + h = const.

For the most real cases, the soil surface exibits convex and concave regions.
The presence of the concave ones generates lakes (e.g. as in Figure 2) which are
local equilibrium points for system (3). To numerically capture the solution
behavior in the neighborhood of such equilibrium points is a very challenging
issue and will be the main subject of the next sections.
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In what follows, we propose a method which uses only one set of grid points
for the discretization of both water depth and velocity functions. Let xi be
the center of the volume element Vi :=

(
xi−1/2, xi+1/2

)
. We introduce the

averaged quantities

hi(t) :=
1

4x

xi+1/2∫
xi−1/2

h(t, x)dx, ui(t) :=
1

4x

xi+1/2∫
xi−1/2

u(t, x)dx,

hui :=
1

4x

xi+1/2∫
xi−1/2

hu(t, x)dx.

The discrete ODE model is given by

4x∂thi = −
[
(hu)i+1/2 − (hu)i−1/2

]
+4xMi,

4x∂t(hui) = −
[
(hu2)i+1/2 − (hu2)i−1/2

]
− fi −4xKi|ui|ui,

(10)

where

fi =

xi+1/2∫
xi−1/2

h∂xwdx.

Upwind approximation: The upwind scheme is defined by

4x∂tUi = Fi+1/2 − Fi−1/2 +
1

2

(
Si+1/2 + Si−1/2

)
+4xTi (11)

where

Ui =

(
hi
hiui

)
, Fi+1/2 := F(Ui, Ui+1) = −

(
hi+1/2ui+1/2

hi+1/2u
2
i+1/2

)
, (12)

Si+1/2 := S((h,w)i, (h,w)i+1) = −
(

0
hsi+1/2(wi+1 − wi)

)
, (13)

Ti :=

(
Mi

−Ki|ui|ui

)
, (14)

with

ui+1/2 =
ui+1 + ui

2
, hi+1/2 =

{
hi, ui+1/2 > 0
hi+1, ui+1/2 < 0

,

hsi+1/2 =

 hi+1/2, ui+1/2 6= 0
hi+1, ui+1/2 = 0, wi+1 > wi
hi, ui+1/2 = 0, wi > wi+1

.

(15)
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Proposition 4. The upwind scheme (11)-(15) is consistent and its approxi-
mation order is O(4x). In addition, if the mass sources are missing, then the
positive cone hi ≥ 0 is a time invariant set.

Proof. To prove the consistence of the scheme, it is sufficient to show that

(i) F(U,U) =

(
hu
hu2

)
;

(ii) if


hi−1 = h−4x∂xh+ O(42x)
hi+1 = h+4x∂xh+ O(42x)
wi−1 = w −4x∂xw + O(42x)
wi+1 = w +4x∂xw + O(42x)

, then

1

2
(Si+1/2 + Si−1/2) =

=

(
0

h∂xw4x+ O(42x)

)
Note that the terms from the r.h.s. of the equalities from (ii) are calculated
in x = xi. (i) and (ii) can be easily verified by straightforward calculations.

Also, in the absence of a mass source, one can write

4x∂thi = −
(
hi+1/2ui+1/2 − hi−1/2ui−1/2

)
and observe that if hi equals zero then ∂thi ≥ 0.

One type of equilibrium point for our equations consists of a sequence of
local lakes and dry regions. For simplicity, we consider an equilibrium point
consisting of a single lake flanked by dry regions.

Proposition 5 (Steady lake). Let N be the number of volume elements. As-
sume that the mass source Mi is missing and the discrete data
P = {(hi, ui)}i=1,N are such that there exists a set of consecutive indexes
I = {i0, i0 + 1, . . . , i0 + l}, such that

(a) zi + hi = α, ∀i ∈ I,

(b) zi ≥ α, hi = 0, ∀i 6∈ I,

(c) ui = 0, i = 1, N .

Then P is an equilibrium point of ODEs (11).

Proof. The proposition is proved if one shows that the r.h.s. of (11) is zero
for the equilibrium point P. It is clear that Fi+1/2 − Fi−1/2 = 0. Also, if
i 6∈ {i0− 1, i0, i0 + l, i0 + l+ 1}, then Si+1/2 + Si−1/2 = 0 because all hs vanish
inside the dry regions, while w-differences vanish inside the lake domain. At
the boundary of the lake, i.e. for i ∈ {i0 − 1, i0, i0 + l, i0 + l + 1}, we have
Si+1/2 = 0 = Si−1/2 since, for both of them, at least one of their factors (either
hs or w – difference) vanishes.
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Proposition 6 (Energy dissipation). Let N be the number of volume ele-
ments. Consider the boundary conditions given by

u1 = 0 = uN . (16)

Let us introduce the independent variables hi, mi, with mi := hiui and define
the discrete energy functions

Ei(hi,mi) =
1

2

m2
i

hi
+

1

2
gh2

i + gx3
ihi, E =

N∑
i=1

4xEi.

Let
{(
h0
i , u

0
i

)}
i=1,N

be the initial data for system (11) and E the energy func-

tion corresponding to the solution of (11) with boundary conditions (16). Then
E is a decreasing function with respect to the time variable, i.e.

d

dt
E < 0. (17)

Proof. One has

d

dt
E =

∑
i

4x d

dt
Ei =

∑
i

4x
(
∂Ei
∂hi

dhi
dt

+
∂Ei
∂mi

dmi

dt

)
,

where
∂Ei
∂hi

= wi −
1

2
u2
i ,

∂Ei
∂mi

= ui,

and therefore

4x
(
∂Ei
∂hi

dhi
dt

+
∂Ei
∂mi

dmi

dt

)
=

(
wi −

1

2
u2
i

)
4xdhi

dt
+ ui4x

dmi

dt
=

= Si +Hi −4xK|ui|3,

where

Si := −wi
(
hi+1/2ui+1/2 − hi−1/2ui−1/2

)
− ui

1

2

[
hsi+1/2(wi+1 − wi)+

+hsi−1/2(wi − wi−1)
]

and

Hi :=
1

2
u2
i (hi+1/2ui+1/2 − hi−1/2ui−1/2)− ui

[
hi+1/2(ui+1/2)2−
−hi−1/2(ui−1/2)2

]
.
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With the above notations, we can now write

d

dt
E =

∑
i

Si +
∑
i

Hi −
∑
i

4xK|ui|3. (18)

Using the boundary conditions (16) and straightforward calculations, we get

∑
i

Si =

N−1∑
i=1

hi+1/2ui+1/2(wi+1 − wi)−

−
N−1∑
i=1

hsi+1/2ui+1/2(wi+1 − wi) =

=

N−1∑
i=1

(
hi+1/2 − hsi+1/2

)
ui+1/2(wi+1 − wi),

and with the definition (15) of hs one can easily conclude that∑
i

Si = 0. (19)

Also ∑
i

Hi = −1

2

N−1∑
i=1

hi+1/2ui+1/2

(
u2
i+1 − u2

i

)
+

+

N−1∑
i=1

hi+1/2(ui+1/2)2(ui+1 − ui),

and using again (15), we obtain ∑
i

Hi = 0. (20)

Now (18), (19) and (20) give

d

dt
E = −

∑
i

4xK|ui|3,

which proves the proposition.

Remark 1. Unfortunately, the energy disipates at a very slow rate when the
trajectory of ODEs approaches the equilibrium state, and therefore, from a
numerical point of view, one faces with small oscillations of the free surface of
the lake.
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Artificial viscosity
In order to eliminate these oscillations, we introduce artificial viscosity in

(11) and obtain the following system of ODEs

4x∂tUi = Fvi+1/2 − Fvi−1/2 +
1

2
(Si+1/2 + Si−1/2) +4xTi, (21)

where

Fv(Ui, Ui+1) = F(Ui, Ui+1) + ci+1/2

(
0

ui+1 − ui

)
,

and ci+1/2 = max
a=±

max
j=i,i+1

|λa(uj , hj)|, with λ± defined similarly (but in 1D) as

in (6).
The reader is referred to [3, 13] for generalities on the theory of finite

volume method used in hyperbolic systems, and to [4, 12, 14] for the special
case of shallow water applications.

4 Numerical results

A major difficulty one encounters when integrating the system (11) or (21)
is to find solutions having hi → 0 for some i ∈ I and hi ≥ c > 0 for i /∈ I.
In this case, both systems become singular. To fix this problem, we use a
semi-implicit method with time-variable discretization. Our full discrete and
semi-implicit methods reads as:

hn+1
i = hni − λ(

(
hni+1/2u

n
i+1/2 − hni−1/2u

n
i−1/2

)
+4tMn

i ,(
hiui + Ki|ui|ui

)n+1
= hni u

n
i − λ

[(
hn+1
i+1/2(uni+1/2)2 − hn+1

i−1/2(uni−1/2)2
)
−

−1

2

(
hsi+1/2(wi+1 − wi) + hsi−1/2(wi − wi−1)

)n+1

+

+hn+1
i+1/2c

n
i+1/2(uni+1 − ui)− h

n+1
i−1/2c

n
i−1/2(uni − uni−1)

]
(22)

As our time integration scheme is of semi-implicit type, it is expected that
there must be an upper bound for the time step to assure the stability of the
numerical scheme. By numerical investigation, we find the following constraint

λ <
1

2 max
i
ci+1/2

. (23)

for the time step. Note that if the time step satisfies the condition (23) and
if there are no mass sources (i.e. M = 0) then hni ≥ 0 for any i and n > 0
provided that h0

i ≥ 0.
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Remark 2. The scheme works well for Ki not too small. In our examples,
any Ki > 0.1 is good enough.

Figure 3 presents some numerical results obtained with our scheme.

Figure 3: The dashed and continuous lines represent the water and soil sur-
faces, respectively. The first row of pictures gives the evolution of the free
water surface on bare soil, i.e. absence of vegetation, at times t = 0.1, 2,
and 3. The second row gives the evolution of the free water surface on a soil
covered with vegetation at the same moments of time as before.

5 Conclusions and final remarks

The modelling equations (1) mainly address to a hydrographic basin that ex-
hibits variation with respect to the soil surface orientation, slope and plant
cover density. It is quite general and allows one to solve many practical prob-
lems. In order to use it, one needs tools for terrain data acquisition concerning
physical parameters and some high computational infrastructure. In this pa-
per, we restrict ourselves to a simplified problem and show the flexibility of
the model of taking into account the influence of plant cover on the water
flow dynamics. We also investigate some mathematical properties (with phys-
ical relevance) of the discrete model (11), and the energy dissipation due to
water-plant and water-soil surface frictional interactions.

Concerning the time numerical integration of the ODE model, note that
the standard integration methods (e.g. Runge-Kutta or Euler) do not work
when the thickness of the water film vanishes. Unfortunately, we were not able
to find a full discrete variant for the energy dissipation property that helps us
to better control the time step. Numerical tests emphasized there exists an
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upper bound of the time step that keeps under control the boundness of the
solution. The condition (23) was mainly obtained by analogy with the well
known Lax condition used in hyperbolic system theory, and we observed that
it also works in our case.

As further research, we plan to improve the time numerical integration of
the ODE model and to analyze the convergence of the ODE solution to the
solution of the continuum model.
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