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Abstract

In this paper we survey our work on preconditioners based on the
Inverse Sherman-Morrison factorization. The most important theoret-
ical results are also summarized and some numerical conclusions are
provided.

1 Introduction

The solution of linear systems
Ax = b, (1)

where A is a nonsingular large and sparse matrix, is usually computed applying
an iterative method, typically a Krylov method, see [17]. To get convergence,
or to improve it, a preconditioner can be used. A preconditioner is a matrix
M that approximates the inverse of A and can be constructed in several ways,
even implicitly. When a preconditioner is used, instead of system (1) one of
the systems

MAx = Mb (left preconditioning)

AMy = b, x = My (right preconditioning) (2)

M1/2AM1/2y = M1/2b x = M1/2y (symmetric preconditioning)
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is solved by an iterative method.
There are many ways to compute a preconditioner. Two of them are of

interest for us, the one that computes an approximation of A−1, the so called
approximate inverse preconditioners; the second is based on the computation
of an incomplete factorization of A, typically the well known Incomplete LU
(ILU) factorization or the Incomplete Cholesky (IC) factorization for the sym-
metric positive definite case.

Let us focus now on approximate inverse preconditioners, (see [3] for a de-
tailed discussion). These preconditioners are applied by matrix-vector prod-
ucts in each iteration of the Krylov method. Then they are highly parallel.
Some methods to obtain approximate inverse preconditioners are based on
minimizing ‖In−AM‖F , subject to some sparsity constraints on M . The use
of the Frobenius norm allows to reduce the problem to solving independent
linear least square problems, which can be done also in parallel. Examples of
this class are the SPAI [14] and MR [13] preconditioners. Other approaches
compute the preconditioner M as a product of triangular factors by an A-
biorthogonalization process, as the AINV method, see [1] and [2].

On the contrary, other preconditioners try to approximate A computing
an incomplete LU [16] or Cholesky factorization. They are implicit because
instead of computing the matrix M in (2), what it is computed is a factor-
ization of its inverse, resulting in a factorization of a matrix that is close to
the coefficient matrix A. Then, in each iteration instead of a matrix vector
product with the matrix M two linear systems with triangular matrices must
be solved. This implies that these kind of preconditioners are not as parallel
as the approximate inverse ones. However they have some advantages. As
A is usually much more sparse than its inverse, this implicit precondition-
ers can also be much more sparse than the explicit ones to get an equivalent
improvement on the convergence of the iterative method.

To get sparse preconditioners it is necessary to annihilate entries during
computation. A threshold is selected and entries are zeroed if their absolute
values are less than this quantity, usually multiplied by some quantity as, for
example, the norm of the corresponding row. That is, an entry is zeroed if
it is small relative to some other relevant quantity. In addition a maximum
number of entries can be allowed by row or column. This technique is the most
usual when computing preconditioners of both types summarized previously.

The Inverse Sherman-Morrison (ISM) decomposition introduced in [8] that
can be used to derive preconditioners of both types: approximate inverse pre-
conditioners and incomplete LU or Cholesky preconditioners. In the next
section we will review the general framework of the factorization and some
theoretical results about the decomposition. In section 3 we will review pre-
conditioners and we will also mention some other results. Our goal is to present
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them in the order they have been known.

2 The ISM factorization

In this section we present the ISM factorization. The factorization was intro-
duced in [8] and later developed in several works. During the process some
changes in the original notation have been introduced to improve readability.
In the sequel we will use the new notation.

The ISM factorization gives a shifted factorization of the inverse of a matrix
and, as stated later, it also contains some of the LU factors of the matrix and
its inverse. The starting point is the next result.

Theorem 1 ([8, Theorem 2.1 and Corollary 2.2]). Let A and A0 be two non-
singular matrices, and let {xk}nk=1 and {yk}nk=1 be two sets of vectors such
that

A = A0 +

n∑
k=1

xky
T
k . (3)

Suppose that rk = 1 + yTk A
−1
k−1xk 6= 0 for k = 1, . . . , n, where Ak−1 = A0 +∑k−1

i=1 xiy
T
i . Then Ak is nonsingular and A−1

k = A−1
k−1 −

1
rk
A−1

k−1xky
T
k A

−1
k−1.

Moreover the vectors

zk := xk −
k−1∑
i=1

vTi A
−1
0 xk
ri

zi (4)

and

vk := yk −
k−1∑
i=1

yTk A
−1
0 zi
ri

vi (5)

are well defined and satisfy the relations

A−1
k−1xk = A−1

0 zk
yTk A

−1
k−1 = vTk A

−1
0

(6)

and
rk = 1 + yTk A

−1
0 zk = 1 + vTk A

−1
0 xk (7)

for k = 1, . . . , n. In addition

A−1
0 −A−1 = A−1

0 ZDV TA−1
0 , (8)

where Z = [z1, . . . , zn], D = diag(r1, . . . , rn) and V = [v1, . . . , vn].
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Note that conditions rk 6= 0 , k = 1, . . . , n allow the use of the Sherman-
Morrison theorem to prove nonsingularity of matrices Ak. But taking into
account (6) and (7) the process can be rewritten without these matrices.

Different choices of A0, {xk} and {yk} vectors can lead to different fac-
torizations of A−1

0 − A−1. The choice that produces what we call the Inverse
Sherman-Morrison factorization is

A0 = sI, xk = ek, yk = (ak − sek)T , (9)

where s is a positive parameter, ek and ek are the kth column and row respec-
tively of the identity matrix, and ak is the kth row of A. In the sequel we will
denote the rows and columns of a matrix using superindexes and subindexes
respectively.

With the choices (9), equations (4), (5) and (7) become

zk = ek −
k−1∑
i=1

vki
sri

zi,

vk = yk −
k−1∑
i=1

akzi
sri

vi,

rk = 1 +
yTk zk
s

=
akzk
s

= 1 +
vkk
s

(10)

Then, if Zs = [z1, . . . , zn], Ds = diag(r1, . . . , rn) and Vs = [v1, . . . , vn], the
ISM factorization is given by

s−1I −A−1 = s−2ZsD
−1
s V T

s . (11)

In [8, Lemma 3.1] the relation of the factors for different values of the
parameter s are established, in particular it is proved that Zs actually does
not depend on s, so the subindex will be removed in the sequel. Algorithm 1
computes the ISM factorization of a given matrix A. It is worth to note the
relation between vectors zk and vk.

The ISM factorization is strongly related with the LU factorization as was
proved in [9].

Theorem 2. A square matrix A has LDU factorization, A = LDU , if and
only if it has ISM factorization s−1I −A−1 = s−2ZD−1

s V T
s .

Then

D = s−1Ds, U = Z−1, Vs = UTD − sL−T .
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Algorithm 1 Computation of the exact ISM factorization (11).

(1) for k = 1, . . . , n
zk = ek
vk = (ak − sek)T

for i = 1, . . . , k − 1
zk = zk − vki

sri
zi

vk = vk − akzi
sri

vi
end for
rk = 1 + vkk/s

end for
(2) Return Z = [z1, z2, . . . , zn], V = [v1, v2, . . . , vn] and

D = diag(r1, r2, . . . , rn).

3 Preconditioners based on the ISM factorization

In this section we review all preconditioners derived up to now from the ISM
factorization. They are approximate inverse preconditioners and also ILU type
preconditioners. We also mention the application of them to least squares
problems.

3.1 Approximate inverse preconditioners

The exact process described in Algorithm 1 can be used to compute a pre-
conditioner if a dropping strategy of small entries is implemented. In [8] the
dropping strategy was based on the size of entries and several results about
the incomplete factorization are proved. The most important one is that the
incomplete process can be applied without breakdown to M-matrices. The ap-
proximate inverse preconditioner (AISM) was compared with AINV, showing
similar robustness and performance.

A block extension of AISM (bAISM) was introduced in [12]. If A is block
partitioned in such a way that diagonal blocks are square, the block ISM reads

A−1 = A−1
0 −A

−1
0 UT−1V TA−1

0 , (12)

where all matrices have the same block partition than A, U is block upper
triangular and T is block diagonal.

Two interesting results were proved. If A0 is taken as the identity matrix,
then by [12, Lemma 3.2.] the kth diagonal block of T is exactly the kth
pivot in the block LU factorization of A. Then the incomplete process does
not breakdown if A is an H-matrix, [12, Theorem 3.4]. A similar result, [12,
Theorem 3.7], is proved if A0 is the diagonal block matrix formed with the
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diagonal blocks of A. It is worth to mention that this second case reduces
to the first one if a right block Jacobi scaling is previously done to A [12,
Theorem 3.8].

3.2 ILU type preconditioners based on ISM

In [9] the relation between the ISM and LDU factorizations, that was previ-
ously stated for pivots, was extended in a fruitful way as stated in Theorem 2.
From this result it follows that the ISM factorization contains the D (maybe
scaled) and U factors of the LDU factorization of A, and the factors L−1,
U−1 of the LDU factorization of A−1, the other factor D−1 is easily computed
as sD−1

s . This situation is specially interesting when A is a symmetric pos-
itive definite matrix. Then all factors of the LDLT factorizations of A are
available and it is possible to get a preconditioner computing an incomplete
Cholesky factorization. Moreover, since all factors of the Cholesky factor-
ization of A−1 are also computed, special dropping strategies can be used,
namely those based on the results obtained by M. Bollhöfer and Y. Saad for
LU factorizations, [6, 7]. This robust strategy drops entries by value, but the
value is compared with the norm of a row of the inverse. That is, given a drop
tolerance τ an entry of the incomplete factor L̂ is zeroed if

|l̂jk|‖ekL̂−1‖ ≤ τ.

Also the dual dropping criteria can be used. If ˆ̀
jk denotes the entry of jth

row, kth column of the incomplete factor L̂−1, it is zeroed if

|ˆ̀jk|‖ekL̂‖ ≤ τ.

There is a balance between entries of the matrices L̂ and L̂−1 computed
by the preconditioner obtained implementing this dual dropping strategies to
sparsify matrices in the ISM process given in Algorithm 1. So it is called
Balanced Incomplete Factorization (BIF). This balance gives raise to robust
preconditioners as numerical experiments presented in [9] confirm. In addition
they also show that the BIF preconditioner has a very good behavior from the
point of view of the selection of the dropping parameter. As it is well known as
the value of the dropping parameter decreases the density of the preconditioner
increases. Although theoretically the number of iterations should decrease,
for some methods and matrices this is not true. Even, in some cases, the
preconditioner stops being able to get convergence for some interval of the
dropping parameter, and then the method converges again. This is not the
case of BIF, the method is robust and the number of iterations varies smoothly
with a decreasing trend, see Figures 5.1–5.3 in [9]. On the other hand we get
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UTD

−sL−T

Vs

LD

−sU−1

Ṽs

Figure 1: Factors of the LDU factorizations of A and A−1 included in Vs and
Ṽs. Green parts are factors of A, and blue parts are factors of A−1.

good results with very sparse preconditioners. Let us mention at this point
that all codes we use to compute preconditioners implement also a restriction
in the number of nonzero entries of the matrix, which probably is the reason
that explain why we can not get denser preconditioners.

3.3 ISM preconditioners for general nonsingular matrices: nBIF

As mentioned above, when A is a nonsymmetric matrix from the ISM factor-
ization one can retrieve all factors in A−1 = U−1D−1L−1, and factors D and
U in A = LDU . To get the missed factor U it is proposed in [10] to compute
the ISM factorization of AT .

To fix notation let

s−1I −A−T = s−2Z̃D̃−1
s Ṽ T

s ,

the ISM factorization of the inverse of AT . Then

Vs = UTD − sL−T and Ṽs = LD − sU−1,

as depicted in Figure 1. As a consequence Z and Z̃ are no longer needed.
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Moreover, as stated in Lemma 3.1 of [10]

vpk = s
ṽkp
dk
−

k−1∑
i=p+1

ṽki
di
vpi. for p < k,

A dual expression allows computation of ṽpk, for p < k, and then the strict

upper triangular parts of Vs and Ṽs are computed in a new way. Entries of
factors of the inverse are used to compute entries of factors of the matrix and
vice versa. In BIF they were used only to drop entries.

Numerical results in [10] show the same that was already true for BIF. The
method is robust and the dependence of the dropping tolerance is not critical.

3.4 BIF for least squares problems

It is clear that BIF can be applied to the iterative solution of least squares
problems

min
x
‖b−Ax‖2

when the coefficient matrix has full column rank (and hence has at least as
many rows as columns). If this is the case the matrix ATA is symmetric and
positive definite and a BIF preconditioner can be computed.

Anyway some particular aspects of the least squares problems should be
taken into account. Since ATA is much denser than A, to get a sparse precon-
ditioner a lot of entries should be dropped, and some instabilities may appear.
To prevent this possibility two additional strategies are used in [11] to improve
robustness. The first one is to replace the way that the pivots are computed.
Instead of to compute them as in (10), that is as sri, they are computed as
zTi A

TAzi. The second one follows the ideas of Tismenetsky in [18], by storing
additional entries that are used only in computations, but finally discarded a
better preconditioner is computed, see Algorithm 2.2 in [11]. We refer to this
preconditioner as lsBIF.

In [11] lsBIF was compared with IC, an incomplete Cholesky factoriza-
tion preconditioner see [4] for implementation details; AINV; and Cholesky
incomplete modified Gram Schmidt, CIMGS [19], see [15] for details of the
implementation. All preconditioners were used to accelerate the conjugate
gradient for least squares (CGLS) [5] iterative method. Results show the ro-
bustness of the method and also its stability with respect the choice of the
threshold.
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4 Conclusions

The ISM factorization can be used to compute robust, sparse and efficient pre-
conditioners, taking advantage of the fact that it computes factors of the LDU
factorization of the coefficient matrix and also of its inverse. Numerical ex-
periments exhibits good performance for all preconditioners developed: direct
ones, as BIF for symmetric matrices, nBIF for general matrices and lsBIF for
least squares problems with full column rank; as well as those of approximate
inverse type (AISM and bAISM).

The relation between the factorization and the LDU decomposition also
means that the incomplete factorization can be computed breakdown free for
H-matrices, and in the case of full column rank matrices for the normal equa-
tions.
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