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Weaker hypotheses for the general projection
algorithm with corrections

Alexandru Bobe, Aurelian Nicola, Constantin Popa

Abstract

In an earlier paper [J. of Appl. Math. and Informatics, 29(3-
4)(2011), 697-712] we proposed a general projection-type algorithm with
corrections and proved its convergence under a set of special assump-
tions. In this paper we prove convergence of this algorithm under a much
weaker set of assumptions. This new framework gives us the possibil-
ity to obtain as a particular case of our method the two-step algorithm
analysed in [B I T, 38(2)(1998), 275-282].

1 Introduction

We will consider the problem: find x ∈ IRn such that

‖ Ax− b ‖= min{‖ Az − b ‖, z ∈ IRn}, (1)

where ‖ · ‖ denotes the Euclidean norm (〈·, ·〉 will be the Euclidean scalar
product). Concerning the matrix involved in (1) we will suppose throughout
the paper that it has nonzero rows Ai and columns Aj , i.e.,

Ai 6= 0, i = 1, . . . ,m, Aj 6= 0, j = 1, . . . , n. (2)

These assumptions are not essential restrictions of the generality of the prob-
lem (1) because, if A has null rows and/or columns, it can be easily proved that
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they can be eliminated without affecting its set of classical or least squares so-
lutions. We first introduce some notations: the spectrum and spectral radius
of a square matrix will be denoted by σ(B) and ρ(B), respectively. By AT ,
N(A),R(A) we will denote the transpose, null space and range of A. PS(x)
will be the orthogonal (Euclidean) projection onto a vector subspace S of some
IRq. S(A; b), LSS(A; b), xLS will stand for the set of classical and least squares
solution of (1), respectively, and the (unique) minimal norm solution. In the
consistent case for (1) we have S(A; b) = LSS(A; b). In the general case the
following properties are known (see [5], Chapter 1)

xLS ⊥ N(A), b = bA + b∗A, with bA = PR(A)(b), b
∗
A = PN(AT )(b), (3)

LSS(A; b) = xLS + N(A) and x ∈ LSS(A; b) ⇔ Ax = bA, (4)

S(A; b) = xLS + N(A) and x ∈ S(A; b) ⇔ Ax = b. (5)

Let Q : n×n and R : n×m be real matrices satisfying the (main) assumptions

I −Q = RA, (6)

and
if Q̃ = QPR(AT ), then ‖ Q̃ ‖ < 1, (7)

where ‖ Q̃ ‖ denotes the spectral norm of the matrix Q̃. In the paper [4] we
proposed the following algorithm (a standard example of such an algorithm is
Kaczmarz’s projection method; see Algorithm 5.4.3 in [1]).
Algorithm General Projections with Corrections.
Initialization: x0 ∈ IRn is arbitrary.
Iterative step:

xk+1 = Qxk +Rb+ vk, (8)

where
vk ∈ R(AT ),∀k ≥ 0. (9)

We introduced in [4] the additional assumptions:

∀y ∈ IRm, Ry ∈ R(AT ), (10)

and, for εk defined by
εk := vk +Rb∗A, (11)

we assumed that there exist constants c > 0 and δ ∈ [0, 1) such that

‖ εk ‖≤ cδk, ∀k ≥ 0. (12)

Then, the following result was proved in [4].
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Theorem 1. Under the assumptions (6) – (7) and (9) – (12), for any sequence
(xk)k≥0 generated by the algorithm (8) we have

PN(A)(x
k) = PN(A)(x

0),∀k ≥ 0 (13)

and
lim
k→∞

xk = PN(A)(x
0) + xLS ∈ LSS(A; b). (14)

In this paper we will introduce a new set of assumptions weaker than (7)
and (12) and we will prove that the algorithm (8) has the same convergence
properties. Moreover, we will show that the two step algorithm presented by
Elfving in [2] fits into the above mentioned more general hypotheses.

2 The new set of weaker assumptions

We will keep the assumptions (6), (10) and (9), but replace (7) with

if Q̃ = QPR(AT ), then ρ(Q̃) < 1. (15)

and replace (12) with
lim
k→∞

εk = 0. (16)

By a direct application of (6) and (10) we obtain

if x ∈ N(A) then Qx = x ∈ N(A), (17)

if x ∈ R(AT ) then Qx = x−RAx ∈ R(AT ). (18)

Moreover, the equalities (13) hold as in Lemma 1 of [4].
We can now prove the main result of our paper.

Theorem 2. Under the hypotheses,

I −Q = RA,

if Q̃ = QPR(AT ), then ρ(Q̃) < 1,

∀y ∈ IRm, Ry ∈ R(AT ),

vk ∈ R(AT ),∀k ≥ 0,

lim
k→∞

εk = 0,

any sequence (xk)k≥0 generated by the algorithm (8) converges and (14) holds.
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Proof. According to (13) we can define the error vector of the iteration (8)
as

ek = xk − (PN(A)(x
0) + xLS). (19)

Moreover, from (15) it follows that (I − Q̃) is invertible and (see, e.g., [3])

(I − Q̃)−1 = I + Q̃+ Q̃2 + · · · =
∑
j≥0

Q̃j . (20)

Then, as in [4] we obtain the equality

ek+1 = Q̃ek + εk,∀k ≥ 0, (21)

from which we get

ek = Q̃ke0 +

k−1∑
i=0

Q̃k−1−iεi, ∀k ≥ 1. (22)

From (15) (see [3], Lemma 5.6.10) there exist a matrix norm (depending on
Q̃) ‖ · ‖∗ such that

‖ Q̃ ‖∗ < 1. (23)

Let ‖ · ‖∗ be a vector norm compatible with the above matrix norm, then

‖ Q̃x ‖∗ ≤ ‖ Q̃ ‖∗‖ x ‖∗, ∀x ∈ IRn. (24)

But, from (16) we obtain that limk→∞ ‖ εk ‖∗= 0, thus (see also (23)) if ε > 0
is arbitrary fixed there exist an M > 0 and an integer k1ε ≥ 1 such that

‖ εk ‖∗ ≤ M, ∀k ≥ 1 (25)

and
‖ Q̃ ‖k∗ ≤ ε, ‖ εk ‖∗ < ε, ∀k ≥ k1ε . (26)

Then we define kε ≥ 1 by
kε = 2k1ε + 1 (27)

and consider k = kε + µ, with an arbitrary integer µ ≥ 0. Now, we first take
norms, use (26) and split the sum in (22) as

‖ ek ‖∗ ≤ ‖ Q̃ ‖k∗‖ e0 ‖∗ +

k−1∑
i=0

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗

≤ ε ‖ e0 ‖∗ +

k1ε∑
i=0

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗ +

k−1∑
i=k1ε+1

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗ . (28)



Weaker hypotheses for the general projection algorithm with corrections 13

For the first sum in (28), from (25) and (26) we get

k1ε∑
i=0

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗

≤ M

k1ε∑
i=0

‖ Q̃ ‖k−1−i∗ = M
(
‖ Q̃ ‖k−1∗ + · · ·+ ‖ Q̃ ‖k−1−k

1
ε

∗

)

= M ‖ Q̃ ‖k−1−k
1
ε

∗

(
‖ Q̃ ‖k

1
ε
∗ + · · ·+ 1

)
= M ‖ Q̃ ‖k

1
ε+µ
∗

1− ‖ Q̃ ‖k
1
ε+1
∗

1− ‖ Q̃ ‖∗

≤M ‖ Q̃ ‖k
1
ε+µ
∗

1

1− ‖ Q̃ ‖∗
<

Mε

1− ‖ Q̃ ‖∗
. (29)

For the second sum in (28), from the above formula for k, (27) and (26) we
get

k−1∑
i=k1ε+1

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗=‖ Q̃ ‖
k1ε+µ−1
∗ ‖ εk

1
ε+1 ‖∗

+ ‖ Q̃ ‖k
1
ε+µ−2
∗ ‖ εk

1
ε+2 ‖∗ + · · ·+ ‖ Q̃ ‖∗‖ εk

1
ε+µ−1 ‖∗ + ‖ εk

1
ε+µ ‖∗

≤‖ εk
1
ε+1 ‖∗

(
‖ Q̃ ‖k

1
ε+µ−1
∗ + · · ·+ 1

)
=‖ εk

1
ε+1 ‖∗

1− ‖ Q̃ ‖k
1
ε+µ
∗

1− ‖ Q̃ ‖∗
< ε

1

1− ‖ Q̃ ‖∗
. (30)

From (26) and (28) – (30) we conclude that, for an arbitrary ε > 0, there exist
an integer kε ≥ 1 (see also (27)), such that for any k ≥ kε we have

‖ ek ‖∗ ≤ ε ‖ e0 ‖∗ +

k−1∑
i=0

‖ Q̃ ‖k−1−i∗ ‖ εi ‖∗

≤ ε ‖ e0 ‖∗ +
Mε

1− ‖ Q̃ ‖∗
+ ε

1

1− ‖ Q̃ ‖∗
= ε

(
‖ e0 ‖∗ +

M + 1

1− ‖ Q̃ ‖∗

)
(31)

from which (14) follows and the proof is complete.

Corollary 1. Suppose that (6), (15), and (16) hold, and that

xk ∈ R(AT ), ∀k ≥ 0. (32)

Then, any sequence (xk)k≥0 generated by the algorithm (8) converges and

lim
k→∞

xk = xLS . (33)
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Proof. We define the error vector ek by

ek := xk − xLS , ∀k ≥ 0. (34)

Because of (18) and the fact that xLS ∈ R(AT ) we get

QxLS = Q̃xLS , (35)

and
(I − Q̃)xLS = xLS −QPR(AT )(xLS)

= xLS −QxLS = (I −Q)xLS = RAxLS = RbA,

thus,
RbA = (I − Q̃)xLS = (I −Q)xLS . (36)

Consequently, by using (34), (8), (32) and (36) we successively get , ∀k ≥ 0

ek+1 = xk+1 − xLS = Q̃xk +Rb+ vk − xLS

= Q̃xk+Rb+vk−(Q̃xLS+RbA) = Q̃(xk−xLS)+vk+Rb∗A = Q̃ek+εk. (37)

Then, as in the proof of Theorem 2 we obtain (22) for ek from (34) and then
(33), because for x0 ∈ R(AT ) we have PN(A)(x

0) = 0. This completes the
proof.

Next we show that the two steps algorithm of Elfving [2] is a special case of
our algorithm.
Algorithm Elfving (ELF).
Initialization:

x0 ∈ R(AT ), y0 = b−Az0, for some z0 ∈ IRn. (38)

Iterative step:
yk+1 = (I −AΓ)yk, (39)

xk+1 = Qxk +R(b− yk+1). (40)

The matrices Q : n× n, R : n×m, Γ : m× n satisfy

Q+RA = I, (41)

and
for w ∈ R(A), z = Qz +Rw if and only if Az = w, (42)

ρ((I −AΓ)PR(A)) < 1, (43)

ρ(QPR(AT )) < 1, (44)

z ∈ N(AT ) =⇒ Γz = 0, (45)

u ∈ R(A) =⇒ Ru ∈ R(AT ). (46)



Weaker hypotheses for the general projection algorithm with corrections 15

Proposition 1. (i) The algorithm (ELF) is identical with algorithm (8), with
the corrections vk defined by

vk := −Ryk+1. (47)

(ii) The assumptions (6), (15), (16) and (32) are satisfied.

Proof. The assumptions (6) and (15) are identical with (41) and (44),
respectively.
To show that assumption (32) holds we argue by mathematical induction, as
in the proof of Proposition 3 in [4].
Assumption (16) holds because, from (47), and again as in the proof cited
before, we get

vk +Rb∗A = −Ryk+1 +Rb∗A = −R
[
(I −AΓ)PR(A)

]k+1
(bA).

According to the hypothesis (43) and Theorem 1, from Chapter 1 in [5], the
matrix (I − AΓ)PR(A) is convergent, i.e. limk→∞((I − AΓ)PR(A))

k = 0, from
which we get (16) and the proof is complete.
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