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On Chasles’ Property of the Helicoid in
Tri-Twisted Real Ambient Space
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Abstract

An elementary property of the helicoid is that at every point of the
surface the following condition holds: cot θ = C · d, where d is the
distance between an arbitrary point to the helicoid axis, and θ is the
angle between the normal and the helicoid’s axis. This rigidity property
was discovered by M. Chasles in the first half of the XIXth century.
Starting from this property, we give a characterization of the so-called
tri-twisted metrics on the real three dimensional space with the property
that a given helicoid satisfies the classical invariance condition. Similar
studies can be pursued in other geometric contexts. Our most general
result presents a property of surfaces of rotation observing an invariance
property suggested by the analogy with Chasles’s property.

1 Introduction

The helicoid was originally brought to light by Meusiner [16], and its impor-
tant role in the theory of surfaces was recognized early in the development of
differential geometry. In 1842, E. Catalan proved that the only ruled surfaces
that are minimal are either a part of a plane or a part of a helicoid [3]. Note
that in Catalan’s original proof the helicoid is described by the equation

y = −C arctan
x

z
.
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D. Hilbert and S. Cohn-Vossen wrote in section 30 of their monograph [13]
that ”the most general helicoid is the surface swept out by an arbitrary space
curve performing a uniform screw motion about a fixed axis.” Thus, the idea
of a helicoid ruled along an arbitrary curve is quite old. More recently these
kinds of surfaces have been called ”bent helicoids”. Bent helicoids along a
generating curve have been studied quite a lot recently. Although we do not
aim here to summarize any recent developments, in support to our claim we
would like to remind just one direction of study, since bent helicoids along
a circle play a central role in [17] as well as in [1]. This idea will motivate
our Example 2. Twisting the metric in the ambient space is an idea dual to
bending the helicoids, and we’ll see this idea materialized in our theorem.

Reading further into D. Hilbert and S. Cohn-Vossen’s monograph [13], we
see that section 33 is dedicated to the study of bendings leaving a surface
invariant. A natural question complementing this discussion is what deforma-
tions of the ambient space where the helicoid lies preserve other rigid properties
of a specific helicoid. If the question has to do with the geometry of the am-
bient space, then the outcome is a study in submanifold geometry, closer in
spirit to the developments in [4, 5, 8]. This quest, whose origin can be traced
in section 33 of Hilbert and Cohn-Vossen monograph is the motivation of our
present study. We provide further details in the next section.

Helicoids play an important role in recent developments in the geometry of
surfaces. C. J. Costa [9] , D. Hoffman and W. H. Meeks [10, 11] have disproved
a longstanding conjecture which stated that the only complete embedded min-
imal surfaces in R3 of finite topological type are the plane, the catenoid, and
the helicoid. This conjecture turned out to be false as there exists a family of
complete embedded minimal surfaces defined on a genus k−1 (k > 1) compact
Riemann surface with three points removed. For a discussion of Costa’s sur-
face in the context of the geometry of surfaces with constant mean curvature,
see [14], p.65 et al. To further pinpoint the important place of the helicoid
in the geometry of surfaces in the three-dimensional real space, we remind
that D. E. Blair and Th. Koufogiorgios proved that the only ruled surface
in Euclidean space with vanishing second Gaussian curvature is a piece of a
helicoid [2].

Twisted product metrics have been introduced by B.-Y. Chen in [6] as a
generalization of warped product metrics [20].

For the simplicity of notation we denote the Riemannian metric by the
classical dot product since our work will be done in R3. However, we’ll specify
in the context of every theorem what metric we use.
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2 Motivation for Our Study: Chasles’ Angle Invariance
Property for Helicoids

Dirk J. Struik pointed out [23] that Lancret’s theorem was originally stated
in 1802: A necessary and sufficient condition that a curve be of constant slope
is that the ratio of curvature to torsion be constant. However, the first proof
was given by B. de Saint Venant in 1845, as mentioned in [23], p.34.

Today, Lancret’s theorem appears in several introductory texts (see e.g.
Problem 3104, p. 156 in [15]). With all its extended exposure, the geometry
of helices still reveals new interesting properties and connections with other
areas, as exemplified by B.-Y. Chen’s study of rectifying curves [7].

Lancret’s theorem depends on the metric in the ambient space. If we
deform the metric in the ambient space, the statement of Lancret’s theorem
does not necessarily hold true. Since a helicoid is a ruled surface generated
by the rulings lying along the normal direction of a helix, we’ll be looking at
the corresponding property in the geometry of surfaces. This fact is usually
stated as follows (Problem 4.2.6 [21]). Let σ(u, v) = (v cosu, v sinu, λu), be
the helicoid with pitch λ, where λ is a constant. Then the cotangent of the
angle that the standard unit normal of σ at a point p makes with the z−axis
is proportional to the distance of p from the z−axis. The proof is just a simple
direct computation. This is equivalent to the classical theorem of Chasles [23],
p.194: The tangent of the directed angle between a tangent plane at a point
P of a generator of a nondevelopable ruled surface and the central plane is
proportional to the distance of P to the central point.

We’ll say that a ruled surface σ has Chasles’ angle invariance property
if there exists a curve γ(t) (called axis of the ruled surface) such that the
cotangent of the angle that the standard unit normal of σ at a point p makes
with γ’s tangent vector is proportional to the distance of p from the axis γ(t).
We note that this curve γ(t) plays the role of the general curve described by
Hilbert and Cohn-Vossen in section 30 in [13] ( as we mentioned above).

To complete our discussion, we remind here that O. Bonnet focused on
another condition on constant angles to characterize the geometry of ruled
surfaces. His theorem states the following. If a curve on a ruled surface
satisfies any of the three conditions: (a) of being a geodesic, (b) of being a
striction line, (c) of intersecting the generators at constant angles, then any
two of these three conditions implies the third. (See [23], p.195.)

3 Study of the Axial Property Through Examples

A natural question to ask is this: how remarkable is Chasles’ angle invariance
property? We explore this idea by two examples. First, we look at the standard
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helicoid, but with a different ”axis”, i.e. we change the curve that supports
the rulings. In the second example, we look at a bent helicoid around a planar
circle. In each of these examples, we see the relation between cot θ and the
distance between an arbitrary point to the helicoid’s axis.

Example 1. Consider the helix given by γ : R → R3,
γ(t) = (a cos t, a sin t, bt). Then the velocity is γ′(t) = (−a sin t, a cos t, b),
and the acceleration is γ′′(t) = (−a cos t,−a sin t, 0). Define the surface σ :
R× (−1, 1)→ R3 by

σ(t, s) = γ(t) + sγ′′(t). (1)

Then we end up with the parametrization:

σ(t, s) = ((1− s)a cos t, (1− s)a sin t, bt). (2)

To respond to our question, we compare cot∠(N, γ′) and the distance be-
tween σ(t, s) and γ(t). We denote this distance by d. To simplify further our
computations, we take a = 1. We obtain

cot θ =
±b

1− ||γ′(t)||
d

.

In conclusion, we can not talk about the same angle invariance property if the
axis of the helicoid is another helix among those that are generating the same
ruled surface.

In this sense, the position enjoyed by the z−axis is central and the property
obtained as a consequence of Lancret’s theorem is remarkable.

Example 2. Consider the planar curve c(u) = (R cosu,R sinu, 0), for
u ∈ (0, 2π). Then consider the helix twisting around inside the torus k times,
where k is an even natural number (to insure the existence of the normal,
which is needed in Chasles’ angle invariance property). Denote by γ(u) the
position vector that has the coordinate functions:

x(u) = (R+ r cos(ku)) cosu, (3)

y(u) = (R+ r cos(ku)) sinu,

z(u) = r sin(ku).

We write the parametrization of the bent helicoid in the torus of radii R and
r with R > r > 0. Note that r is not essential for the geometry of the ruled
surface. For −1 < s < 1 : The bent helicoid in the torus is:

σ(u, s) = c(u) + s(γ(u)− c(u)) = (1− s)c(u) + sγ(u) (4)
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Based on these geometric considerations, we obtain the bent helicoid in the
torus around the circle in the xy−plane of radius R :

σ : (0, 2π)× (−1, 1)→ R3

σ(u, s) = ((R+ s cos(ku)) cosu, (R+ s cos(ku)) sinu, s sin(ku)). (5)

A short computation shows that the distance between σ(u, s) and c(u) in the
canonical metric in R3 is |s|. A more elaborated direct computation gets for
θ, the angle between the normal and c′(u) the following expression:

cot θ =
sk sin(ku)[sin(ku) + cos(ku)]

R+ s cos(ku)
.

Note that the denominator of this fraction represents the distance from a
moving point to the center of the torus, i.e. the center of the circle described
by c(s). In any case, the angle invariance property is not observed in the form
stated in the previous section.

4 Twisted Metrics on R3 in Which Chasles’ Angle In-
variance Property Is Preserved

In an attempt to find which minimal conditions guarantee that we obtain a
particular geometry, we are performing a type of inquiry that is similar to
the axiomatic analysis described by David Hilbert in [12] and discussed more
recently by V. Pambuccian in [19] from a logical standpoint. The type of
inquiry we perform here aims to find out what are the geometric conditions
sufficient to hold in the ambient space so that the condition cot θ = C ·d holds
true. Both terms cot θ and the distance d depend on the Riemannian metric
in the ambient space.

We prove the following result.

Theorem 4.1. Let σ : (0,∞)× (0, 2π)→ R3, σ(u, v) = (kv, u cos v, u sin v) ⊂
R3, with k > 0, be an isometric immersion into the three dimensional real
space endowed with the tri-twisted metric given by

ds2 = f2(x1, x2, x3)dx21 + h2(x1, x2, x3)dx22 + q2(x1, x2, x3)dx23, (6)

with the f, h, q ∈ C∞(R3), f(x1, x2, x3) > 0, h(x1, x2, x3) > 0, and
q(x1, x2, x3) > 0. Then the helicoid given by σ(u, v) satisfies Chasles’ angle
invariance property along x1−axis if and only if there exists some real con-
stant C such that

hq

kf
= C(h2 cos2 v + q2 sin2 v), ∀u > 0,∀v ∈ (0, 2π). (7)
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Proof: The tangent plane at every point of the helicoid is spanned by

σu = (0, cos v, sin v),

σv = (k,−u sin v, u cos v).

The normal at every point of the helicoid is the vector N = (n,m, p) satisfying
N · σu = 0 and N · σv = 0, which yield the linear system:

mh2 cos v + pq2 sin v = 0, (8)

nkf2 −mh2u sin v + puq2 cos v = 0.

To get the normal direction, take n = 1
k . Then, solving the system (8) we get:

m =
f2 sin v

h2u
p = −f

2 cos v

q2u
. (9)

Therefore the unit length normal is:

N =
1√

f2

k2 + f4 sin2 v
h2u2 + f4 cos2 u

q2u2

(
1

k
,
f2 sin v

h2u
,−f

2 cos v

q2u

)
. (10)

Note that for i = (1, 0, 0) we have i · i = f2. Denote by θ the measure of the
angle between N and the direction i. Then cos θ = 1

k ·
1

||N || . This yields

cot θ =
1
k

f2

u

√
sin2 v
h2 + cos2 v

q2

. (11)

The plane passing through the point (kv, u cos v, u sin v) perpendicular to i =
(1, 0, 0) satisfies:

(X − kv, Y − u cos v, Z − u sin v) · (1, 0, 0) = 0,

which yields f2(X − kv) = 0. Since f > 0, the equation is X = kv. The
distance from the point (kv, u cos v, u sin v) to the point (kv, 0, 0) is

d =

√
h2u2 cos2 v + q2u2 sin2 v.

Writing the condition cot θ = C · d, we obtain immediately (7).

The previous theorem opens the path for many examples of such metrics.

Take for example h = q. Then one gets immediately that any function h =
√
2

kCf



ON CHASLES’ PROPERTY OF THE HELICOID IN TRI-TWISTED REAL
AMBIENT SPACE 127

provides such an example. This proves that there are infinitely many Rieman-
nian metrics on R3. In a particular case we observe that the classical helicoid
preserves Chasles’ angle invariance property when isometrically immersed into
such such an ambient endowed with a metric satisfying (7).

As a particular case of this analysis, we obtain the following.

Corollary 4.2. Let σ : (0,∞)× (0, 2π)→ R3, σ(u, v) = (kv, u cos v, u sin v) ⊂
R3, with k > 0, be an isometric immersion into the three dimensional real
space endowed with the warped metric given by

ds2 = dx21 + h2(x1)(dx22 + dx23), (12)

with the h ∈ C∞(R3), h(x1, x2, x3) > 0. Then the helicoid given by σ(u, v)
satisfies Chasles’ angle invariance property along x1−axis.

Proof: In this setting, cot θ = uh
k , and d = uh, which proves that the

proportionality constant is C = 1
k (the inverse of the helicoidal pitch) for the

case of the warped product metrics.
Example 3. We would like to see an example of such a metric in R3.

Take for example the construction inspired from Riemann’s original idea of
conformal metric:

ds2 = dx21 + e2x1(dx22 + dx23). (13)

This metric provides an example of an ambient space where Chasles’ angle
invariance property for the helicoid along the x1−axis is preserved, in the
context of the corollary stated above. Infinitely many metrics with these
properties can be constructed.

5 Is There a Similar Property for the Catenoid? Exten-
sion to Rotation Surfaces in the Euclidean Space

Let σ(u, v) = (x(u, v), y(u, v), z(u, v)) be a rotation surface along z−axis. A
natural question is: would there be any natural extension of the angle property
we’ve studied before? More precisely, we are interested in the behaviour of
∠(N(u, v), (0, 0, 1)), which in the most general setting is a function in u and
v. The formulation of the question that will yield the extension is: find all the
tri-twisted metrics that preserve this function (or a certain relation with this
function).

We will study this on the catenoid given by the standard parametrization

σ(u, v) =
(
c cosh

v

c
cosu, c cosh

v

c
sinu, v

)
. (14)

Then:
σu =

(
−c cosh

v

c
sinu, c cosh

v

c
cosu, 0

)
,
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σv =
(

sinh
v

c
cosu, sinh

v

c
sinu, 1

)
.

We have ||σu × σv|| = c cosh2 v
c . The unit normal is:

N(u, v) =

(
cosu

cosh v
c

,
sinu

cosh v
c

,− tanh
v

c

)
.

In consequence, cos∠(N, (0, 0, 1)) = − tanh v
c . Note that the distance between

an arbitrary point and the z− axis is d = |v|. We could interpret v in the
previous relation in this way, to compare this property with the helicoid’s
properties.

In this context, the question we ask is the following. Find all the classes
of metrics on R3 of the form

ds2 = f2(x1, x2, x3)dx21 + h2(x1, x2, x3)dx22 + q2(x1, x2, x3)dx23

with the property that cos∠(N, (0, 0, 1)) = − tanh v
c . The answer is the fol-

lowing.

Theorem 5.1. Let σ : (0, 2π)×R→ R3, σ(u, v) =
(
c cosh v

c
cosu, c cosh v

c
sinu, v

)
be an isometric immersion into the three dimensional real space endowed with
the tri-twisted metric given by

ds2 = f2(x1, x2, x3)dx21 + h2(x1, x2, x3)dx22 + q2(x1, x2, x3)dx23, (15)

with the f, h, q ∈ C∞(R3), f(x1, x2, x3) > 0, h(x1, x2, x3) > 0, and
q(x1, x2, x3) > 0. Then the catenoid given by σ(u, v) satisfies
cos∠(N, (0, 0, 1)) = − tanh v

c if and only if

q4(h4 + f2 tan2 u) = h4f4 sec2 u
(
q cosh2 v

c
− sinh2 v

c

)
. (16)

Proof: The dot product is given by f2dx21 + h2dx22 + q2dx23. We need to
find the unit normal

N = (a(u, v), b(u, v),m(u, v)),

satisfying the following conditions:

N · σu = 0, N · σv = 0.

These two conditions yield the system of two equations:

−a · f2 · c cosh
v

c
sinu+ b · h2 · c cosh

v

c
cosu = 0, (17)
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a · f2 · sinh
v

c
cosu+ b · h2 · sinh

v

c
sinu+mq2 = 0. (18)

From equation (17) we get:

b = a
f2

h2
tanu.

If we take a = h2, we obtain b = f2 tanu. Replacing these values in (18) we
get:

m = −h
2f2

q2
sinh

v

c
secu.

Therefore, the normal should be in the direction of the vector:(
h2, f2 tanu,−h

2f2

q2
sinh

v

c
secu

)
.

Its squared magnitude is:

h4 + f4 tan2 u+
h4f4

q4
sinh2 v

c
sec2 u.

The cosine of the angle we study is:

cos∠(N, (0, 0, 1)) =
N · (0, 0, 1)

||N || · 1
=

=
m · q2

q ·
√
h4 + f2 tan2 u+ h4f4

q4 sinh2 v
c sec2 u

=

=
−h2f2 sinh v

c secu

q
q2

√
q4h4 + q4f2 tan2 u+ h4f4 sinh2 v

c sec2 u

The condition we ask is that this last quantity equals− tanh v
c . By setting these

two quantities equal and squaring, after simplifications we obtain relation (16).

The previous theorem suggests that a general characterization is possible
in the three-dimensional real space as ambient. It is very natural to pursue this
extension in R endowed with the usual dot product. We obtain the following.

Theorem 5.2. Consider the surface of rotation obtained by rotating
the curve γ(u) = (f(u), 0, g(u)) about z−axis. This means
σ(u, v) = (f(u) cos v, f(u) sin v, g(u)). Then the cosine of the angle between
the normal and the direction of the z−axis is equal to the function φ(u) if and
only if

ln f(u) =

∫ u

a

φ(w)||γ′(w)||2dw + ln f(a). (19)



ON CHASLES’ PROPERTY OF THE HELICOID IN TRI-TWISTED REAL
AMBIENT SPACE 130

Proof: It is well-known that the normal to the given rotation surface is

N =
σu × σv
||σu × σv||

=
1

f2(ḟ2 + ġ2)
(−fġ cos v,−fġ sin v, f ḟ).

We have immediately that

cos∠(N, (0, 0, 1)) =
ḟ

f(ḟ2 + ġ2)
.

Given some continuous function φ(u), set the equality:

ḟ

f(ḟ2 + ġ2)
= φ.

This generates the differential equation in u :

ḟ

f
= φ[ḟ2 + ġ2].

By integrating both sides with respect to u, we obtain the claimed result on
some interval (a, b), i.e. relation (19).
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