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A Weighted Entropic Copula from Preliminary
Knowledge of Dependence

Ioana Panait

Abstract

This paper introduces a weighted entropic copula from preliminary
knowledge of dependence. Considering a copula with common distri-
bution we formulate the weighted entropy dependence model (WMEC).
We give an approximator for the copula function of this problem. Also,
we discuss some asymptotical properties regarding the unknown param-
eters of the model.

1 Introduction

”The copula function methodology has become the most significant new tech-
nique to handle the co-movement between markets and risk factors in a flexible
way” said Cherubini et. al in the introduction of their book Copula Methods
in Finance from 2004 [8].

Copula function has emerged as a useful tool for modeling stochastic de-
pendence. These functions can model and explain the asymmetric dependence
between random variables without looking at their marginal distributions- this
being one of the main advantages of copula over density function. In essence, a
copula is a multidimensional probability distribution with uniform marginals.
For these reasons copula functions have been studied intensely over the years
since their discovery: Embrechts, P., Lindskog, F., McNeil, A.J., [15]; Kolve,
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N., dos Anjos, U., Mendes, B. [22]; Mikosch [24]; Cherubini, U., Luciano, E.,
Vecchiato, W. [8] and not only.

The last decade has seen an explosion of manuscripts on the applications
of copulas, especially to financial issues. These applications include mod-
elling financial contagion [31], portofolio selection using a multivariate regime-
switching copula to capture asymmetric dependence [12] or studies involving
asymmetric pattern in volatility [26] and not only.

Among the many densities in statistical literature [5, 27], one special case
of densities represent the maximum entropy densities first proposed by Jaynes
(1957) [20]. These densities are obtained by maximization of an information
criterion subject to mass and mean preserving constraints, denoted by ME.
The principle of maximum entropy can be viewed as a criterion to select the
best probability distributions compatible to some set of constraints. Applica-
tions of ME can be found in various fields of computer science, in statistical
learning, especially natural language processing [13, 17]. The ME method was
applied to obtain new classes of Lorenz curves by maximizing Tsallis entropy
under mean and Gini equality and inequality constraints [28]. For more details
on entropy optimization we sugest the reader to see [29].

The foundation of information theory was laid out by Shannon’s 1948 paper
where he introduced the well-known Shannnon entropy which gives us the level
of uncertainty of a random variable. Since then the field of information theory
has exploded and many more entropies have been introduced: Tsallis entropy
[34, 35, 36] which is along with Tsallis statistics used in various applications
[33], weighted entropy introduced by Bellis and Guiaşu [6, 16] as a measure of
useful information contained by a random variable, by taking into account both
the probabilities and the values of the random variables, weighted cumulative
paired interval entropy [4, 30] and many more. Some applications of the
concept of entropy can be found in [1, 2, 3] where it has been used in the
context of divergence rates for Markov chains, and in [27] in determining the
level of uncertainty of statistical models used in reliability. For more details
regarding information theory see [11].

In 2007, Dempster et. al [14] have discussed the problem of constructing
empirical copulas from relative entropy. Some applications of maximum en-
tropy copula can be found in [18] where it has been used to model multi-site
streamflow dependence and in [21]. By applying the ME principle to copula
functions, Chu and Satchell [10] have proposed a maximum entropy copula
obtained by maximizing the bivariate Shannon entropy. Having limited in-
formation, they proposed a theoretical problem in order to obtain relative
entropy measures of joint dependence. The constraints considered concerns
to the need for uniform marginal distributions and to measures of association
and rank correlations.
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Considering the context described above we introduce a weighted entropy
dependence model using copula functions.

The paper is organized as follows. In Section 2 we introduce the weighted
entropy dependence model while in Section 3 we give an approximator for the
copula function of this model. Section 4 is dedicated to the asymptotic prop-
erties of the unknown parameters the of WMEC model. Section 5 concludes
this paper.

2 Weighted entropy dependence model

The study of copula functions and the role they play in probability theory and
mathematical statistics is a subject still in its infancy. There are still many
open issues and many things to discover.

In recent years, several studies have been conducted in the field of finan-
cial economics, as they have the potential to model and explain asymmetric
dependence between random variables, separate from marginal distributions.

The copula is proposed by Sklar [32] as a method of constructing common
distributions with given marginals. The advantage of copula functions is that
the dependence of random variables can be parametrically specified, regardless
of their marginals.

A bivariate copula C(·, ·) is defined over [0, 1]2 with values in [0, 1] and
has the following properties [25]:

1. C(x, 0) = C(0, y) = 0, C(x, 1) = x and C(1, y) = y for every x, y ∈ [0, 1]

2. C(x, y) is 2-increasing, i.e., C(x2, y2)−C(x2, y1)−C(x1, y2)+C(x1, y1) ≥
0 for every x1, x2, y1, y2 ∈ [0, 1] such that x1 ≤ x2 and y1 ≤ y2

The Sklar’s theorem links a C(u, v) copula of a common distribution F (x, y)
by the relation F (x, y) = C(F1(x), F2(y)), where F1 and F2 are marginals. We
have

f(x, y) = c(F1(x), F2(y))f1(x)f2(y); c(u, v) =
∂2C(u, v)

∂u∂v
(1)

Using the ME method we introduce a new maximum entropy copula prob-
lem. In 2016, Chu and Satchell [10] constructed a maximum entropy copula
(MEC) by maximizing the bivariate Shannon entropy under some set of con-
straints. The problem proposed by them is

ProblemEM : maximize W (c) = −
∫ 1

0

∫ 1

0

c(u, v) log c(u, v)dudv (2)
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subject to ∫ 1

0

∫ 1

0

c(u, v)dudv = 1 (3)

∫ u

0

∫ 1

0

c(x, v)dxdv = u, ∀ u ∈ [0, 1] (4)

∫ 1

0

∫ v

0

c(u, y)dudy = v, ∀ v ∈ [0, 1] (5)

∫ 1

0

∫ 1

0

h(u, v; θ̂N )c(u, v)dudv = 0 (6)

where h(u, v; θ̂N ) is an arbitrary function used to impose constraints con-
cerning the copula function with respect to measures of association and rank
correlations [10].

Considering the problem above and how it was constructed, we introduce
a new dependence model defined by the optimization problem:

Problem WME

min
f
E(X,Y )

{
w(F1(X), F2(Y ))

[ 1

f1(X)f2(Y )
log

f(X,Y )

f1(X)f2(Y )
− 1

f1(X)f2(Y )

+
1

f(X,Y )

]}
(7)

s.t.
E(X,Y )[a(X,Y )] = µ0

where f is a two-dimensional density, f1 and f2 are unidimensional densi-
ties corresponding to the random variables X and Y , respectively, and log is
the natural logarithm, supp(f1) = {x ∈ R : f1(x) 6= 0}, supp(f2) = {x ∈ R :
f2(x) 6= 0}, and a is an arbitrary function so µ0 < ∞. Function w(u, v) is a
positive and bounded weight function. Also, we suppose that the expectations
exist.

The main goal of this paper is solving problem (7). The solution is a
weigthed maximum entropy copula, denoted by WMEC. We assume for the
rest of the paper that WMEC is a differentiable function so that its copula
density exists.

From Sklar’s theorem, the optimized function reduces to:

CHw(c) = −E(U,V )

{
w(U, V )[log c(U, V )− 1 + c(U, V )−1]

}
(8)
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where (U, V ) is a random vector on [0, 1]2 with c(u, v) probability density
function.

Taking into account the optimized reduced function, the WME problem
can be reformulated in the following manner:

Max
c
CHw(c) = −E(U,V )

{
w(U, V )[log c(U, V )− 1 + c(U, V )−1]

}
, (9)

with restrictions

E(U,V )[I(U ∈ [0, 1], V ∈ [0, 1])] = 1 (10)

E(U,V )[I(U ∈ [0, u), V ∈ [0, 1])] = u, (∀) u ∈ [0, 1], (11)

E(U,V )[I(U ∈ [0, 1], V ∈ [0, v))] = v, (∀) v ∈ [0, 1], (12)

E(U,V )[a(U, V ; λ̂s)] = 0. (13)

where E(U,V ) is calculated in relation to the density of the random vector
(U, V ), that is to say with respect to c(u, v), here I being the indicator function.

Relation (10) implies that c(u, v) is a joint density on the unit circle. Rela-
tions (11) and (12) imply that the marginals of c(u, v) are U[0,1] distributions,
i.e. uniformly distributed on the interval [0, 1]. Relation (13) imposes a con-
straint on the joint behaviour of U and V . This constraint concerns measures
of association and rank correlations. To be observed that we can have more
than one constraint like (13).

A measure of association is defined as ρ =
∫ 1

0

∫ 1

0
a(u, v)dC(u, v), where

a is a bivariate function such that |ρ| < ∞. This measure is also referred
as copula-based measure of dependence. This measure of association can be

estimated by the rank statistic ρ̂ =
1

N

N∑
i=1

a(
Ri
N
,
Si
N

), where (Ri, Si) represents

the ranks of (Xi, Yi) in a sample of size N . For example, if we have constraints

concerning Spearman correlation, we take a(u, v; λ̂s) = a(u, v) = uv, u, v ∈
[0, 1]. Throughout this paper, we sometimes omit s for brevity - we write
a(u, v;λ).

The following lemmas we use in the next section where we give an approx-
imator for WMEC.



A WEIGHTED ENTROPIC COPULAS FROM PRELIMINARY KNOWLEDGE
OF DEPENDENCE 228

Lemma 1. [9] We consider

E(U,V ) {I(U ∈ [0, 1], V ∈ [a, b])} = β − α

E(U,V ) {I(U ∈ [a, b], V ∈ [0, 1])} = β − α, (14)

where α and β are arbitrary numbers from [0,1], α < β and a < b.
Using a dyadic sequence from [0,1], (14) is equivalent to:

E(U,V )

{
I(U ∈ [j · 2−m, (j + 1) · 2−m], V ∈ [0, 1])

}
=

E(U,V )

{
I(U ∈ [0, 1], V ∈ [j · 2−m, (j + 1) · 2−m])

}
=

1

2m
(15)

(∀) j = 0, 1, ..., (2m − 1) and m is large enough.

Lemma 2. [19] [Du Bois- Reymond] Let b(t) be a continuous function on the
interval [t0, t1]. Suppose that the following equality holds for any continuous

function v(t) with mean zero value (i.e.
∫ t1
t0
v(t)dt = 0) :∫ t1

t0

b(t)v(t)dt = 0.

Then, b(t) = b = const. Conversely, if b(t) = const, then
∫ t1
t0
b(t)v(t)dt = 0.

Lemma 3. [23] The indicator function I(x,∞)(y) can be approximated by a
continuous function Φs(y, x), defined as:

Φs(y, x) =
s√
2π

∫ y

−∞
exp{−(v − x)2s2/2}dv.

Φs(y, x) has the following properties:

lim
s→∞

Φs(y, x) =⇒ I(x,∞)(y),

lim
s→∞

∂Φs(y, x)

∂y
=⇒ δ(y − x),

where δ(·) is Dirac’s delta function.
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3 An approximator for WMEC model

In this section we give an approximator for the copula function of the weighted
maximum entropy problem (WME). In order to obtain the approximator of
WMEC we use definite integrals.

Theorem 4. WMEC, ĉ(u, v) can be approximated by an approximator,
ĉwm,n(u, v), for m, n large enough, with

ĉwm,n(u, v) = Bm,n(u, v)
{
E(Z1,Z2)[Bm,n(Z1, Z2)]

}−1
, (16)

where

(Z1, Z2) ∼ U[0,1]2 , i.e. (Z1, Z2) is bivariate uniform distributed on [0, 1]2

and

Bm,n = exp{−
2m−1∑
j=0

[µ̂1,j(φ(n(j · 2−m − u)) + φ(−n((j + 1)2−m − u)))+

+µ̂2,j(φ(n(j ·2−m−v))+φ(−n((j+1)·2−m−v)))]−µ̂1,2ma(u, v; λ̂)−α0c̃(u, v)},

with
θ̂m = {µ̂1,0, ..., µ̂1,2m−1, µ̂2,0, ..., µ̂2,2m−1}

which contains the minimum values of the following potential function:

Dm,n(θ̂m, λ̂) = E(Z1,Z2) exp
{
−

2m−1∑
j=0

(w(Z1, Z2))−1
[
µ̂1,j(φ(n(j · 2−m − Z1))

+ φ(−n((j + 1)2−m − Z1))− 1 + 2−n)

+ µ̂2,j(φ(n(j · 2−m − Z2)) + φ(−n((j + 1) · 2−m − Z2))− 1 + 2−m)
]

− µ̂1,2ma(Z1, Z2; λ̂)− α0c̃(Z1, Z2)
}

for given α0 and c̃(u, v), where φ(x) = 1√
2π

∫ x
−∞ exp{− 1

2y
2}dy.

Proof. Using Lemma 1, the Lagrangian function associated with the WME
problem can be expressed as follows:
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L(c, θm; λ̂) =

= −E(U,V )

{
w(U, V )[log c(U, V )− 1 + c(U, V )−1]

}
− µ1,−1

× [E(U,V ) {I(U ∈ [0, 1], V ∈ [0, 1])} − 1]

−
2m−1∑
j=0

{µ1,jE(Z1,Z2)

{
I(Z1 ∈ [j · 2−m, (j + 1) · 2−m], Z2 ∈ [0, 1]) · [c(Z1, Z2)− 2−m]

}
+ µ2,jE(Z1,Z2)

{
I(Z1 ∈ [0, 1], Z2 ∈ [j · 2−m, (j + 1) · 2−m]) · [c(Z1, Z2)− 2−m]

}
}

− µ1,2m · E(Z1,Z2)a(Z1, Z2; λ̂)

= E(Z1,Z2){w(Z1, Z2)[log c(Z1, Z2)− 1 + c(Z1, Z2)
−1] + µ1,−1[c(Z1, Z2)− 1]

+

2m−1∑
j=0

{µ1,j · I(Z1 ∈ [j · 2−m, (j + 1) · 2−m])

+ µ2,j · I(Z2 ∈ [j · 2−m, (j + 1) · 2−m])} ·
[
c(Z1, Z2)− 2−m]

+ µ1,2ma(Z1, Z2; λ̂) · c(Z1, Z2)}.

where (Z1, Z2) ∼ U[0,1]2 , i.e. (Z1, Z2) is bivariate uniform distributed.

Taking the first derivative of Lagrange function L(c, θm, λ̂) with respect to
c we get:

E(Z1,Z2)

{
w(Z1, Z2) log c(Z1, Z2)+µ1,−1+

2m−1∑
j=0

[µ1,j I(Z1 ∈ [j·2−m, (j+1)·2−m])+

+µ2,j I(Z2 ∈ [j · 2−m, (j + 1) · 2−m])] + µ1,2ma(Z1, Z2; λ̂)
}
,

Define

dn(u, v) = w(u, v) log c(u, v)+µ1,−1 +

2m−1∑
j=0

{µ1,jI(u ∈ [j ·2−m, (j+1) ·2−m])+

+µ2,jI(v ∈ [j · 2−m, (j + 1) · 2−m])}+ µ1,2ma(u, v; λ̂),

then applying Lemma 2 to the function

d(u, v) =
dn(u, v)

c̃(u, v)− 1
,
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where c̃(u, v) is an arbitrary copula density so that,

E(Z1,Z2)[c̃(Z1, Z2)− 1] = 0

we obtain the following representation:

ĉm,n(u, v) = exp{−(µ1,−1 − α0)−
2m−1∑
j=0

{µ1,jI(u ∈ [j · 2−m, (j + 1) · 2−m])+

+µ2,jI(v ∈ [j · 2−m, (j + 1) · 2−m])} − µ1,2ma(u, v; λ̂)− α0c̃(u, v)}. (17)

where α0 is a generic constant.
By replacing (17) in relation (10), the leading term 1+µ1,−1−α0 is canceled

out and we get:
ĉm,n(u, v) = B∗m,n(u, v) ·Bm,n(u, v) , (18)

where

Bm,n(u, v) = exp
{
− (w(u, v))

−1
(µ1,−1 − α0)

− (w(u, v))
−1

2m−1∑
j=0

{µ̂1,jI(u ∈ [j · 2−m, (j + 1) · 2−m])

+ µ̂2,jI(v ∈ [j · 2−m, (j + 1) · 2−m])}

− µ̂1,2m (w(u, v))
−1
a(u, v; µ̂)− α0 (w(u, v))

−1
c̃(u, v)

}
.

(because
∫

[0,1]2
ĉm,n(u, v)dudv = 1, according to (10) )

and
B∗m,n(u, v) =

(
E(Z1,Z2) (Bm,n(Z1, Z2))

)−1

By (15) we obtain that

B∗
m,n(u, v) · E(Z1,Z2)(I(Z1 ∈ [j · 2−m, (j + 1) · 2−m], Z2 ∈ [0, 1])Bm,n(Z1, Z2)) = 2−n.

B∗
m,n(u, v) · E(Z1,Z2)(I(Z2 ∈ [j · 2−m, (j + 1) · 2−m], Z1 ∈ [0, 1])Bm,n(Z1, Z2)) = 2−n.

B∗m,n(u, v)·E(Z1,Z2)(a(Z1, Z2, λ̂)Bm,n(Z1, Z2)) = 0. for all j = 0, ..., (2m−1).
(19)
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So (18) can be rewritten as follows:

ĉm,n(u, v) = −B∗m,n(u, v)

2m−1∑
j=0

(µ̂1,j2
−m + µ̂2,j2

−m)

× exp
{ 2m−1∑

j=0

{µ̂1,j · ((w(u, v))
−1 · I(u ∈ [j · 2−m, (j + 1) · 2−m])− 2−m)

+ µ̂2,j((w(u, v))
−1 · I(v ∈ [j · 2−m, (j + 1) · 2−m])− 2−m)]

− µ̂1,2ma(u, v; λ̂)− α0c̃(u, v) (w(u, v))
−1
}
.

The potential function can be written as follows:

Dm,n(θ̂m, λ̂) =

∫ 1

0

∫ 1

0

exp{Am +Bm − µ̂1,2ma(u, v, λ̂)− α0 (w(u, v))
−1 c̃(u, v)}du dv

where

Am = −
2m−1∑
j=0

µ̂1,j (w(u, v))
−1 · I(u ∈ [j · 2−m, (j + 1) · 2−m])− 2−m)

and

Bm = −
2m−1∑
j=0

µ̂2,j (w(u, v))
−1 · I(v ∈ [j · 2−m, (j + 1) · 2−m])− 2−m)

Then, (19) is equivalent to the following system of equations:

∂Dm,n(θ̂m, λ̂)

∂µ1,j
= 0

∂Dm,n(θ̂m, λ̂)

∂µ2,j
= 0

∂Dm,n(θ̂m, λ̂)

∂µ1,2m

= 0 (20)

for all j = 0, ..., (2m − 1) .

We remark that since the second order derivative of Dm,n(θ̂m, λ̂) is the
covariant matrix of
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{(
w(Z1, Z2)

)−1

· I(Z1 ∈ [j · 2−m, (j + 1) · 2−m]),(
w(Z1, Z2)

)−1

· I(Z2 ∈ [j · 2−m, (j + 1) · 2−m]),
(
w(Z1, Z2)

)−1

a(Z1, Z2, λ̂)
}2m−1

j=0
,

Dm,n(θ̂m, λ̂) is positively defined.
We obtain that the solutions of the equation (20) are its minimum values

Dm,n(θ̂m, λ̂),which depends on λ̂, α0 and c̃(u, v).

Since the potential function Dm,n(θ̂m, λ̂) and WMEC (18) are not smooth,
according to common practice, they must be smooth.

From Lemma 2, for n large enough, we have an integral representation for

2m−1∑
j=0

µ1,j · I(u ∈ [j · 2−m, (j + 1) · 2−m]),

Thus, following the results from [10], Lemma 2 leads us to the following:

I(u ∈ [j · 2−m,(j + 1) · 2−m]) = 1− I(u < j · 2−m)− I(u > (j + 1) · 2−m)

= 1− lim
n→∞

n√
2π

j·2−m∫
−∞

exp{−(x− u)2n2/2}dx

− lim
n→∞

n√
2π

−(j+1)·2−m∫
−∞

exp{−(x+ u)2n2/2}dx

= 1− lim
n→∞

φ(n(j · 2−m − u))− lim
n→∞

φ(−n((j + 1) · 2−m − u)).

So,
2m−1∑
j=0

µ1,j · I(u ∈ [j · 2−m, (j + 1) · 2−m]) =

1− lim
n→∞

φ(n(j · 2−m − u))− lim
n→∞

φ(−n((j + 1) · 2−m − u)).

Immediately, we get:
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Dm,n(θ̂m, λ̂) =

∫
[0,1]2

exp
{ 2m−1∑

j=0

(w(u, v))
−1
[
µ1,j(w

−1(u, v)(φ(n(j · 2−m − u))

+ φ(−n((j + 1)2−m − u))− 1) + 2−m)

+ µ2,j (w(u, v))
−1

(φ(n(j · 2−m − v))

+ φ(−n((j + 1)2−m − v))− 1) + 2−m)
]

− µ1,2ma(u, v; λ̂)− α0c̃(u, v)
}
dudv.

and then we have:

Bn ≈ exp{
2m−1∑
j=0

[[µ̂1,j(φ(n(j · 2−m − u)) + φ(−n((j + 1)2−m − u))) (w(u, v))
−1

+ µ̂2,j(φ(n(j · 2−m − v)) + φ(−n((j + 1)2−m − v)))] (w(u, v))
−1

− µ̂1,2ma(u, v; λ̂) (w(u, v))
−1 − α0c̃(u, v) (w(u, v))

−1}

Now, we can write

ĉwm,n(u, v) = B∗m,n(u, v) ·Bm,n(u, v)

which can be symmetrized by taking µ1,j = µ2,j for all j = 0, ..., (2m − 1)

and by considering a(u, v; λ̂) to be a symmetric function.
To complete the demonstration, we have to proof that the WMEC ap-

proximator,

Ĉwm,n(u, v) =

u∫
0

v∫
0

ĉwm,n(u, v)dudv,

is the second order increasing. Let [u1, u1 + ∆]× [v1, v1 + ∆] be a closed range
included in [0, 1]2.

We can observe that, because ĉm,n(u, v) is a positive function, then:

Ĉwm,n(u1 + ∆, v1+∆)− Ĉwm,n(u1 + ∆, v1)− Ĉwm,n(u1, v1 + ∆) + Ĉwm,n(u1, v1)

(21)

=

u1+∆∫
u1

v1+∆∫
v1

ĉwm,n(u, v)dudv (22)
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which is also non-negative.
Now, for m and n large enough, we get the WMECs.

4 Some asymptotical properties

From constraint (13), we have some unknown parameters that we need to

estimate. These unknown parameters are represented by θ̂s. In order to
estimate θ̂s we use a random sample of size s.

Let Dm(µ, θ) be the approximate potential function with dependence pa-
rameters θ, according to Section 3, where µ̂s and µ0 denote the minimal val-
ues of Dm(µ, θ) for θ = θ̂s and θ = θ0, respectively. The Hessian matrices of
Dm(µ, θ) are H1,m(µ, θ) = ∇µµ′Dm(µ, θ) and H2,m(µ, θ) = ∇µθ′Dm(µ, θ).

Following the line from [10] and [9] for our model, we will consider the
following hypotheses:

Cw1 . θ̂s
p→ θ0 ∈ Int(A), where A is some non-empty compact set and Int(A)

is the set of interior points of A. The dimension of the set A is equal to
the number of dependent constraints.

The set

B = {µ ∈ Rdim(µ)/5µ Dm(µ, θ) = 0, ∀ θ ∈ A} (23)

is also non-empty and compact, where dim(B) is equal to the number of
Lagrange multipliers in the expression Dm(µ, θ).

So, the number of marginal constraints is dim(µ)− dim(A).

Cw2 . The map from A to B is a difeomorphism (i.e., there is a continuous
bijective correspondence).

Cw3 . Dm(µ, θ) is a strictly convex function of µ for all θ and uniformly con-
tinuous (in probability) in θ,

i.e.
sup
µ∈B

∣∣∣Dm(µ, θ̂s)−Dm(µ, θ0)
∣∣∣ p→ 0, as

∣∣∣θ̂s − θ0
∣∣∣ p→ 0.

Cw4 . The vector of dependence parameter estimates is asymptotically normal
such that

s1/2(λ̂s − λ0)
d→ s(0,Ψ),

where Ψ is an asymptotic variance-covariance matrix of θ̂s.
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The assumption Cw2 states that the relationship between A and B is a bi-
jective correspondence relation (i.e., for a given set of dependence parameter

estimates θ̂s in A there exists uniquely a set of Lagrange multipliers µ̂s in B
which contains a unique subset of the Lagrange multipliers that determining
the dependence constraints). The assumption ensures that the potential func-
tion has uniquely minimal values for a given set of parameters. Conversely,
these minimal values are uniquely determined by a set of parameters.

Theorem 5. Considering Cw1 − Cw4 , we have

µ̂s
p→ µ0, (24)

s1/2(µ̂s − µ0)
d→ s(0, H−1

1,m(µ0, θ0)H2,m(µ0, θ0)ΨH ′2,m(µ0, θ0)H−1′

1,m(µ0, θ0)).

We note that p
−→

and d−→ means the convergence ı̂n probability and law

(distribution), respectively.
In particular, if dependent restrictions are linear in parameters, i.e. a(u, v; θ)

=a(u, v)− θ, the potentially associated function of the problem WEM is:

Dm(µ, θ̂) =

∫
[0,1]2

exp{µ1,−1 +

2m−1∑
k=0

(w(u, v))−1[µ1,k(Φ(k − 2nu)

+ Φ(2mu− k − 1)− 1 + 2−m)

+ µ2,k(Φ(k − 2mv) + Φ(2mv − k − 1)− 1 + 2−m)]

− k′(a(u, v)− θ̂)}dudv − µ1,−1, (25)

where λ = {µ1,−1, µ1,0, µ2,0, · · · , µ1,k, µ2,k, · · · , µ1,2n−1, µ2,2n−1, k
′} and

µ1,−1 corresponds to the restriction∫
[0,1]2

c(u, v)dudv = 1.

Considering H2,n(θ0, λ) = I, we obtain

Theorem 6. If (25) satisfies Cw1 − Cw4 , then we have:

µ̂s
p→ µ0.

s1/2(µ̂s − µ0)
d→ s(0, H−1

1,n(µ0, θ0)IΨI
′
H−1′

1,m(µ0, θ0)),

where I is a diagonal matrix of size dim(µ0)× dim(θ0).
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The previous theorem suggests that the efficiency of estimators µ̂s increases
as we use more marginal restrictions. However, if we add too many marginal
restrictions, the efficiency of the estimators may decrease as this may increase
the probability of the covariance {u, v, a(u, v; θ̂s)} in Dn(µ, θ̂s) to be negative.
Therefore, the Hessian matrix H1,n(µ0, θ0) contains some negative elements
that can cause the asymptotic dispersion s1/2(µ̂s−µ0) to decrease excessively.

5 Conclusions

In this paper we propose a maximum entropy copula by maximazing a weigthed
entropy. Based on the work of Chu and Satchell [10] we introduce a new de-
pendence model, namely the weighted maximum entropy model, denoted by
WME. This problem has as solution a copula function- the weighted max-
imum entropy copula, denoted by WMEC. We approximate this solution
using sets of definite integrals. Also, we discuss some asymptotical properties
of the unknown paramaters concerning measures of association.
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[16] S. Guiaşu, 1971. Weighted entropy. Reports on Mathematical Physics 2
(3), 165-179

[17] G. Grigoraş, D. Dănciulescu, A. Bandoi, 2011. Hierarchically identifica-
tion. Recent Researches in Tourism and Economic Development 511-513.
In Proceedings of the 1st International Conference on Tourism and Eco-
nomic Development (TED 2011), Drobeta Turnu Severin, Romania, Oc-
tober 2011.

[18] Hao, Z. Singh, V.P., 2013. Modeling multi-site streamflow de-
pendence with maximum entropy copula. Water Resour. Res., 49,
doi:10.1002/wrcr.20523.



A WEIGHTED ENTROPIC COPULAS FROM PRELIMINARY KNOWLEDGE
OF DEPENDENCE 239

[19] Ioffe, A.D., Tihomirov, V.M. Theory of Extremal Problems; Lions, J.L.,
Papanocolalaou, G., Rockafellar, R.T., Eds.; Studies in mathematics and
its applications; North Holland Publishing Company: Amsterdam, The
Netherlands; New York, NY, USA; Oxford, UK, 1979; Volume 6.

[20] Jaynes, E.T. (1957) ”Information theory and statistical mechanics”, I.
Physical Review 106, 620–630

[21] J. Kapur, 1989. Maximum-Entropy Models in Science and Engineering;
Wiley: New York, NY, USA.

[22] Kolve, N., dos Anjos, U., Mendes, B., 2006. Copulas: a review and recent
developments. Stochastic Models 22, 617-660.

[23] Kutoyants, Y.A, 2004. Statistical Inference for Ergodic Diffusion Pro-
cesses; Springer series in statistics; Springer-Verlag: London, UK; Berlin,
Heidelberg, Germany.

[24] Mikosch, T., 2006. Copulas: tales and facts. Extremes 9, 3-20.

[25] R.B. Nelsen, 2006. An Introduction to Copulas; Springer: New York, NY,
USA.

[26] Ning C., Xu D., Wirjanto T.S., Is volatility clustering of asset returns
asymmetric? J. Bank. Financ. 2015, 52, 62-76
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