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Another approach to the evaluation of a certain
multivariate compound distribution

Elena-Gratiela ROBE-VOINEA and Raluca VERNIC

Abstract

In this work, we consider the multivariate aggregate model intro-
duced in [11], model that takes into account the case when different
types of claims affect in the same time an insurance portfolio under some
specific assumptions related to the number of claims. For the probabil-
ity function of the corresponding multivariate compound distribution,
[11] obtained an exact recursive formula proved using the properties of
the probability generating function. In this paper, we present a new
shorter proof of the same formula that we also extend to a new form.
Moreover, we present an alternative approximate method to evaluate the
compound distribution based on the Fourier transform, and we compare
both methods on a numerical example.

1 Introduction

To be able to evaluate premiums and ruin probabilities, actuaries study aggre-
gate claims distributions corresponding to insurance portfolios. These distri-
butions result from individual or collective models. In this paper, we consider
a collective model in a multivariate setting. This model has been introduced in
[10] to study aggregate claims in the case when different types of claims simul-
taneously affect an insurance portfolio (e.g., floods, storms or earthquakes),
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and has the form:

(S1, ..., Sm) =

(
N1∑
l=0

U1l +

N0∑
k=0

L1k, ...,

Nm∑
l=0

Uml +

N0∑
k=0

Lmk

)
, (1)

where m ≥ 2 is the number of different types of claims affecting the portfolio,
Sk denotes the aggregate claims of type k, Nk the number of claims of only
type k, and N0 the number of common claims. As mentioned in [10] , model (1)
extends to the multivariate case the one from [5]. The resulting multivariate
distribution is called compound distribution, being built from the distributions
of the claims and of their numbers. We also denote S = (S1, ..., Sm) and
N = (N0, ..., Nm).

Considering that all the involved random variables (r.v.s) are of discrete
type, the usual assumptions related to model (1) are :

• Each set of claim sizes (Ujl)l≥1 are non-negative, independent and iden-
tically distributed (i.i.d.) r.v.s as a generic r.v. denoted Uj , 1 ≤ j ≤ m,
independent of the claim numbers and of the other claim sizes, including
(L1k, ..., Lmk).

• The random vectors (L1k, ..., Lmk)k≥1 are also non-negative i.i.d. as the
generic random vector L = (L1, ..., Lm), and independent of the claim
numbers. The components of L, however, are usually dependent.

• By convention, Uj0 = Lj0 = 0,∀j = 1,m.

An exact recursion for the evaluation of the distribution of this model
under the assumption that N follows a multivariate Poisson distribution is
presented in [10]. In [11], two different assumptions on N are considered that
we shall also take into account in the following:

A1 The first one is related to the total number of claims N = N0 + N1 +
... + Nm, whose probability function (p.f.) is assumed to satisfy the
Panjer-type recursion

Pr (N = n) =

(
a+

b

n

)
Pr (N = n− 1) ,∀n ≥ 1,

for some constants a, b ∈ R (for details on Panjer’s class, see [8] or [13]);

A2 The second one concerns the conditional distribution of N given N =
n, which is assumed to be multinomial Mnom(n; p1, ..., pm) with the
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parameters n ∈ N and p1, ..., pm ∈ (0, 1) such that p0 := 1 −
∑m
i=1 pi ∈

(0, 1). We recall that (see, e.g., [6]), with n =
∑m
i=0 ni,

Pr(N0 = n0, N1 = n1, ..., Nm = nm|N = n) =
n!

m∏
i=0

ni!

m∏
i=0

pni
i .

Both recursions obtained by [10] and [11] extend to the multivariate setting
the ones presented by [5] in the bivariate case m = 2. In [11], the proof of the
recursion for the corresponding multivariate compound distribution is based
on properties of the probability generating function (p.g.f.); in next section,
we shall give a new shorter proof to this recursive formula and simultaneously
obtain a new such recursion. Moreover, in Section 3 we present an approxi-
mate alternative method to evaluate the compound distribution based on the
Fast Fourier Transform (FFT), which has the advantage of being less time
consuming than the recursive method especially when one needs to evaluate
the distribution’s tail. We compare the two methods on a numerical example
and conclude.

To simplify the writing, we introduce more notation: we denote by fS

the p.f. of S, by fj the p.f. of Uj , 1 ≤ j ≤ m, and by fL the p.f. of
L. The p.g.f. of a r.v. is denoted by g indexed with that r.v., and simi-
larly, its characteristic function is denoted by ϕ indexed with its name. Also,
n = (n0, ..., nm) , t = (t1, ..., tm) ,0 = (0, ..., 0) ,x = (x1, ..., xm), similarly y, z
and 1, while the difference x− y is componentwise.

2 The recursion - a shorter proof

From [11], we have that for the general model (1) under the assumptions
(A1-A2), the p.g.f. of S is given by

gS(t) = gN

 m∑
j=1

pjgUj(tj) + p0gL(t)

 . (2)

Using the properties of the p.g.f., the following recursive formula (3) has been
proved in [11]. We shall now present a shorter proof based on similar recur-
sions already proved in [12]. In the same time, we shall also obtain the new
alternative recursive formula (4).

Proposition 2.1. Under the assumptions (A1-A2) of model (1), the following
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starting value and recursive formulas hold:

fs(0) = gS(0) = gN

 m∑
j=1

pjfj(0) + p0fL(0)

 ;

fS(x) = K

a
m∑
j=1
j 6=k

pj

xj∑
yj=1

fj(yj)fS(x1, ..., xj−1, xj − yj , xj+1, ..., xm)

+pk

xk∑
yk=1

(
a+ b

yk
xk

)
fk(yk)fS(x1, ..., xk−1, xk − yk, xk+1, ..., xm)

+p0
∑

0<y≤x

(
a+ b

yk
xk

)
fL(y)fS(x− y)

 , (3)

for xk ≥ 1, xj ≥ 0,∀j 6= k; and

fS(x) = K


m∑
j=1

pj

xj∑
yj=1

(
a+ b

yj
x+

)
fj(yj)

×fS(x1, ..., xj−1, xj − yj , xj+1, ..., xm)

+p0
∑

0<y≤x

(
a+ b

y+
x+

)
fL(y)fS(x− y)

 , x > 0, (4)

where K =

[
1− a

(
m∑
j=1

pjfj(0) + p0fL(0)

)]−1
and x+ =

m∑
i=1

xi.

Proof. Under the assumptions (A1-A2), model (1) can be represented as

(S1, ..., Sm) =

N∑
k=0

(C1k, ..., Cmk),

where, as before, N = N0 + N1 + ... + Nm, Cj0 = 0,∀j = 1,m, while the
random vectors (C1k, ..., Cmk)k≥1 are i.i.d. as the generic C having the p.f.

fC(y) =

m∑
j=1

I(yi = 0,∀i = 1,m, i 6= j)pjfj(yj) + p0fL(y). (5)
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Here I denotes the indicator function defined by I(A) = 1 if A is true, and 0
otherwise. From [12] (see also [13], formulas (15.4) and (15.5), respectively),
it holds that

fS(x) =
1

1− afC(0)

∑
0<y≤x

(
a+ b

yk
xk

)
fC(y)fS(x− y), xk ≥ 1, (6)

fS(x) =
1

1− afC(0)

∑
0<y≤x

(
a+ b

y+
x+

)
fC(y)fS(x− y), x > 0. (7)

By inserting (5) into (6) we obtain for xk ≥ 1,

fS(x) =
1

1− a

(
m∑
j=1

pjfj(0) + p0fL(0)

)

×


m∑
j=1

pj
∑

0<y≤x

(
a+ b

yk
xk

)
I(yi = 0,∀i = 1,m, i 6= j)fj(yj)

×fS(x− y) + p0
∑

0<y≤x

(
a+ b

yk
xk

)
fL(y)fS(x− y)

 .

In the first sum, we separately consider the cases j = k and j 6= k.
- When j = k, combining I

(
yi = 0,∀i = 1,m, i 6= k

)
with y > 0 yields yk ≥ 1,

hence the middle term of (3);
- When j 6= k, from I

(
yi = 0,∀i = 1,m, i 6= j

)
we clearly have yk = 0, there-

fore ∑
0<y≤x

(
a+ b

yk
xk

)
I(yi = 0,∀i = 1,m, i 6= j)fj(yj)fS(x− y)

becomes
xj∑
yj=1

afj(yj)fS (x1, ..., xj−1, xj − yj , xj+1, ..., xm) ,

from where formula (3) is immediate.
Similarly, by inserting (5) into (7) we obtain formula (4) for x > 0 as

follows

fS(x) = K


m∑
j=1

pj
∑

0<y≤x

(
a+ b

y+
x+

)
I
(
yi = 0,∀i = 1,m, i 6= j

)
fj(yj)

×fS(x− y) + p0
∑

0<y≤x

(
a+ b

y+
x+

)
fL(y)fS(x− y)

 ,
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and ∑
0<y≤x

(
a+ b

y+
x+

)
I
(
yi = 0,∀i = 1,m, i 6= j

)
fj(yj)fS(x− y)

=

xj∑
yj=1

(
a+ b

yj
x+

)
fj(yj)fS(x1, ..., xj−1, xj − yj , xj+1, ..., xm),

which completes the proof. �

3 Alternative method - Fast Fourier Transform

3.1 The FFT algorithm

Apart the exact methods (like the recursive one presented above), some ap-
proximate techniques have also been proposed for evaluating aggregate claims
distributions, with the purpose to simplify calculations and reduce the com-
puting time (for details on these methods see, e.g., [7] or [13]). The Fast
Fourier Transform is such a technique that strongly reduces the computing
time, especially when one needs to evaluate the tail of the distribution. More-
over, this technique can be applied to models for which there is no recursion
available. This is why the FFT received special attention in the actuarial lit-
erature, see, e.g., [2], [3], [5], [7], or [9]. In the following, we shall present the
FFT algorithm corresponding to our model and compare it with the recursive
method.

A FFT is an algorithm that computes the discrete Fourier transform and
its inverse extremely fast. We recall that given an m-variate function f (x)
defined on the integer values xj = 0, 1, ..., rj − 1, 1 ≤ j ≤ m, its discrete

Fourier transform f̃ can defined by (definition used in Matlab, in which we
implemented the algorithm)

f̃(c) =

r1−1∑
x1=0

...

rm−1∑
xm=0

f(x) exp

−2πi

m∑
j=1

xjcj
rj

 , cj = 0, ..., rj − 1, 1 ≤ j ≤ m,

having the inverse mapping

f(x) =
1

m∏
j=1

rj

r1−1∑
c1=0

...

rm−1∑
cm=0

f̃(c) exp

2πi

m∑
j=1

xjcj
rj

 , xj = 0, ..., rj−1, 1 ≤ j ≤ m.

For more details on Fourier transforms and their applications (major applica-
tion in signal and image processing) see, e.g., [1].
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To apply the FFT method, the values rj must be powers of two for all
j. For our model (1), we shall use the following algorithm proposed in [9]
based on the FFT and its inverse (IFFT), algorithm that generalizes the one
considered by [5] in the bivariate case. The algorithm needs the characteristic
function ϕS of S, which can be express in terms of the p.g.f. of N and of the
characteristic functions of Ui and of L as (see [9])

ϕS(t) = gN(ϕL(t), ϕU1
(t1), ..., ϕUm

(tm))

= gN

 m∑
j=1

pjϕUj(tj) + p0ϕL(t)

 . (8)

For the last equality, we applied the formula of gN obtained in [11] for model
(1) under the assumptions (A1-A2).

FFT Algorithm
Step 1. Set the truncation points for the r.v.s claim sizes Uj at rj , 1 ≤

j ≤ m, and for L at (r1, ..., rm). The truncated claim size distributions
result as fj = {fj(0), fj(1), ..., fj(rj − 1)} for Uj , 1 ≤ j ≤ m, and f0 =
[fL (j1, ..., jm)]j1,...,jm for L, where 0 ≤ jl ≤ rl − 1, 1 ≤ l ≤ m. If neces-
sary, the resulting vectors fj or the table f0 can be padded with zeros to force
the rjs to be powers of two.

Step 2. Apply the one-dimensional FFT to fj yielding the vector f̃j , 1 ≤ j ≤
m; then apply the multidimensional FFT to f0, yielding the multidimensional
table f̃0.

Step 3. Use formula (8) to obtain the discrete characteristic function
ϕ̃S(j) = gN(f̃0(j), f̃1(j1), ..., f̃m(jm)), 0 ≤ jl ≤ rl − 1, 1 ≤ l ≤ m.

Step 4. Apply the multidimensional IFFT to ϕ̃S to obtain the p.f. of S.

Remark 3.1. The usual way to find the optimal rjs consists in gradually
increasing them (e.g., 32, 64, 128, 256 etc.) until the differences between the
solutions obtained for the current values of the rjs and the previous ones are
no more significant.

Remark 3.2. When the claim sizes distributions are heavy tailed it is rec-
ommended to use the so-called “exponential tilting” method, which consists in
applying an exponential change of measure to the claim sizes distributions that
forces their tails to decrease at an exponential rate. This method reduces the
“aliasing error” generated by the truncation of the claim sizes distributions
and by the “wrap around” effect caused by the discrete Fourier transform (this
effect means placing below the truncation point the compound mass which lies
beyond this point). For more details on this method and its significance see,
e.g., [4], while for its application to model (1) see [9].
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3.2 A numerical illustration

In the following, we consider the numerical example presented in [11] to il-
lustrate the application of recursion (3). For the same data, we shall also
apply the FFT algorithm and compare the results from both methods. Hence,
taking m = 3, we assume that the distribution of the total number of claims
is Poisson, i.e., N ∼ Po (λ) , λ > 0, for which a = 0, b = λ (see, e.g., [13]),
and the p.g.f. gN (t) = eλ(t−1); numerically, we took λ = 5. The claim sizes
distributions are the following:

f1

(
0 1 2 3

0.3 0.2 0.3 0.2

)
, f2

(
0 1 2 3

0.4 0.1 0.3 0.2

)
,

f3

(
0 1 2 3

0.2 0.3 0.4 0.1

)
;

(fL (0, i, j))i,j=0,1 =

[
0.15 0.1
0.05 0.2

]
, (fL (1, i, j))i,j=0,1 =

[
0.2 0.12
0.1 0.08

]
,

while the multinomial parameters values are p0 = 0.25, p1 = 0.25, p2 = 0.3, p3 =
0.2. When applying the recursive formulas, the p.f. values fS must be com-
puted in a certain order, see [11].

We also applied the FFT algorithm presented above (implemented in Mat-
lab), without using the exponential tilting since our claim sizes distributions
are not heavy-tailed. We varied the rjs starting with rj = 8, j = 1, 3 till
rj = 64, j = 1, 3, this last value yielding about the same p.f. as the recursive
formula; this can be seen from Table 1, where we displayed the largest ab-
solute error between the exact values (recursive formulas) and the FFT ones
evaluated till fS(r− 1), r = (r1, r2, r3) , i.e.,

Err(r) := max
0≤x≤r−1

∣∣fS(x)−fFFTS (x)
∣∣ .

In the same table, we also compared the computing time requested for both
techniques used to evaluate the corresponding p.f. till r − 1. We note that
the more values of fS we compute, the better performs the FFT algorithm.
As expected, the speed improvement produced by the FFT is obvious when
evaluating tail values of fS.

Table 1. Accuracy and speed (computing time in seconds) of FFT when
varying the rjs

rj = 8 rj = 16 rj = 32 rj = 64
Exact 0.0443 0.4974 19.6658 1394.7
FFT 0.0863 0.0953 0.19099 0.8947
Err(r) 0.18× 10−2 3.04× 10−6 3.34× 10−13 5.2× 10−18
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In Table 2, we also present some values of fS; the differences between
the values obtained by both techniques being so small, we display only the
exact values. We can conclude that for these data, it is good enough to take
rj = 32, j = 1, 3.

Table 2. Some values of fS

x (3, 3, 3) (7, 7, 7) (10, 10, 10) (15, 15, 15) (20, 20, 20)
fS(x) 3.59×10−3 1.47×10−5 4.56×10−8 3.72×10−13 4.62×10−19

4 Some conclusions and future work

To conclude, two types of techniques can be used to evaluate multivariate
compound distributions: exact techniques (like the recursive method presented
in Section 2) and approximate ones (like the FFT described in Section 3; we
also mention here the simulation method). The choice of the technique should
be based first on the existing formulas (i.e., if there is a recursion available, or
if it is easy to find one) and also on the purpose of the study. More precisely,
from the example above, we conclude that if we need accurate values from
the compound distribution’s tail, then the FFT method is recommended for
its high speed; however, one should be careful with the choice of the optimal
values of the truncation points rjs. Another advantage of the FFT is that it
is already implemented in Matlab, even for higher dimensions. On the other
hand, if one needs very exact values of fS(x), but only for small x’s, the
recursive method works very good, given that we have recursive formulas for
the corresponding multivariate compound distribution.

Therefore, it is important to continue to look for recursions for other types
of multivariate compound models. Apart this, another direction for future
work that we would like to explore is the simulation technique; it would
be interesting to compare its results with the ones from the already studied
methods.

Acknowledgment. The authors wish to thank the referee for the helpful
suggestions, especially on Monte-Carlo simulation.
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